Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum oscillations from Fermi arcs

Abstract

When a metal is subjected to a strong magnetic field B, nearly all measurable quantities show oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface. Recent breakthrough experiments demonstrating the existence of unambiguous quantum oscillations in a cuprate superconductor, YBa2Cu3O6.51, contradict the well-established result of many angle resolved photoemission studies, which consistently indicate ‘Fermi arcs’—truncated segments of a Fermi surface—in the normal state of the cuprates. In this study, with the goal of reconciling the above disagreement, we introduce a mechanism for quantum oscillations that requires only finite segments of a Fermi surface. We show that oscillations periodic in 1/B can occur if the Fermi surface segments are terminated by a pairing gap and present arguments that these oscillations are in fact occurring in the cuprates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Fermi-arc metal (FAM).
Figure 2: Semiclassical analysis.
Figure 3: Semiclassical trajectories.
Figure 4: Exact diagonalization of the lattice model.

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  3. Bangura, A. F. et al. Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov–de Haas oscillations in YBa2Cu4O8 . Phys. Rev. Lett. 100, 047004 (2008).

    Article  ADS  Google Scholar 

  4. Jaudet, C. et al. de Haas–van Alphen oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5 . Phys. Rev. Lett. 100, 187005 (2008).

    Article  ADS  Google Scholar 

  5. Ding, H. et al. Evolution of the Fermi surface with carrier concentration in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 78, 2628–2631 (1997).

    Article  ADS  Google Scholar 

  6. Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006).

    Article  ADS  Google Scholar 

  7. Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

    Article  ADS  Google Scholar 

  8. Kanigel, A. et al. Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase. Phys. Rev. Lett. 101, 137002 (2008).

    Article  ADS  Google Scholar 

  9. Onsager, L. Interpretation of the de Haas–van Alphen effect. Phil. Mag. 43, 1006–1008 (1952).

    Article  Google Scholar 

  10. Lifshitz, I. M. & Kosevich, A. M. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1954).

    Google Scholar 

  11. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  12. Millis, A. J. & Norman, M. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503(R) (2007).

    Article  ADS  Google Scholar 

  13. Chakravarty, S. & Kee, H.-Y. Fermi pockets and quantum oscillations of the Hall coefficient in high temperature superconductors. Proc. Natl Acad. Sci. USA 105, 8835–8839 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, W.-Q., Yang, K.-Y., Rice, T. M. & Zhang, F. C. Quantum oscillations in magnetic field induced antiferromagnetic phase of underdoped cuprates: Application to ortho-II YBa2Cu3O6.5 . Europhys. Lett. 82, 17004 (2008).

    Article  Google Scholar 

  15. Galitski, V. & Sachdev, S. Paired electron pockets in the hole-doped cuprates. Phys. Rev. B 79, 134512 (2009).

    Article  ADS  Google Scholar 

  16. Podolsky, D. & Kee, H.-Y. Quantum oscillations of ortho-II high-temperature cuprates. Phys. Rev. B 78, 224516 (2008).

    Article  ADS  Google Scholar 

  17. Stanescu, T. D., Galitski, V. & Drew, H. D. Effective masses in a strongly anisotropic Fermi liquid. Phys. Rev. Lett. 101, 066405 (2008).

    Article  ADS  Google Scholar 

  18. Andreev, A. F. Thermal conductivity of the intermediate state of superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  19. Varma, C. M. Magneto-oscillations in underdoped cuprates. Phys. Rev. B 79, 085110 (2009).

    Article  ADS  Google Scholar 

  20. Melikyan, A. & Vafek, O. Quantum oscillations in the mixed state of d-wave superconductors. Phys. Rev. B 78, 020502(R) (2008).

    Article  ADS  Google Scholar 

  21. Vafek, O. & Melikyan, A. Index theoretic characterization of d-wave superconductors in the vortex state. Phys. Rev. Lett. 96, 167005 (2006).

    Article  ADS  Google Scholar 

  22. Franz, M. & Millis, A. J. Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B 58, 14572–14580 (1998).

    Article  ADS  Google Scholar 

  23. Berg, E. & Altman, E. Evolution of the Fermi surface of d-wave superconductors in the presence of thermal phase fluctuations. Phys. Rev. Lett. 99, 247001 (2007).

    Article  ADS  Google Scholar 

  24. Anderson, P. W. Simple explanation of Fermi arcs in cuprate pseudogaps: A motional narrowing phenomenon. Preprint at <http://arxiv.org/abs/0807.0578> (2008).

  25. Kaul, R. K., Kim, Y.-B., Sachdev, S. & Senthil, T. Algebraic charge liquids. Nature Phys. 4, 28–31 (2008).

    Article  ADS  Google Scholar 

  26. Uemura, Y. J. et al. Universal correlations between Tc and ns/m* in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  ADS  Google Scholar 

  27. Pasler, V. et al. 3D-XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7−δ single crystals near optimal doping. Phys. Rev. Lett. 81, 1094–1097 (1998).

    Article  ADS  Google Scholar 

  28. Corson, J. et al. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  29. Xu, Z. A. et al. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4 . Nature 406, 486–488 (2000).

    Article  ADS  Google Scholar 

  30. Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8+δ superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

    Article  ADS  Google Scholar 

  31. Hetel, I., Lemberger, T. R. & Randeria, M. Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin copper oxide films. Nature Phys. 3, 700–702 (2007).

    Article  ADS  Google Scholar 

  32. Stöckmann, H. J. Quantum Chaos: An Introduction (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  33. Hossain, M. A. et al. In situ doping control of the surface of high-temperature superconductors. Nature Phys. 4, 527–531 (2008).

    Article  Google Scholar 

  34. Adagideli, I., Goldbart, P. M., Shnirman, A. & Yazdani, I. Low-energy quasiparticle states near extended scatterers in d-wave superconductors and their connection with SUSY quantum mechanics. Phys. Rev. Lett. 83, 5571–5574 (1999).

    Article  ADS  Google Scholar 

  35. Franz, M. & Tešanović, Z. Quasiparticles in the vortex lattice of unconventional superconductors: Bloch waves or Landau levels? Phys. Rev. Lett. 84, 554–557 (2000).

    Article  ADS  Google Scholar 

  36. Vafek, O., Melikyan, A., Franz, M. & Tešanović, Z. Quasiparticles and vortices in unconventional superconductors. Phys. Rev. B 63, 134509 (2001).

    Article  ADS  Google Scholar 

  37. Yasui, K. & Kita, T. Quasiparticles of d-wave superconductors in finite magnetic fields. Phys. Rev. Lett. 83, 4168–4171 (1999).

    Article  ADS  Google Scholar 

  38. Marinelli, L., Halperin, B. I. & Simon, S. H. Quasiparticle spectrum of d-wave superconductors in the mixed state. Phys. Rev. B 62, 3488–3501 (2000).

    Article  ADS  Google Scholar 

  39. Hoffman, J. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  40. Hanaguri, T. et al. Coherence factors in a high-Tc cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).

    Article  ADS  Google Scholar 

  41. Pereg-Barnea, T. & Franz, M. Magnetic-field dependence of quasiparticle interference peaks in a d-wave superconductor with weak disorder. Phys. Rev. B 78, 020509 (2008).

    Article  ADS  Google Scholar 

  42. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenological models for the gap anisotropy of Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission spectroscopy. Phys. Rev. B 52, 615–622 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with D. Bonn, W. Hardy, B. Seradjeh, L. Taillefer, Z. Tešanović, O. Vafek, M. Vojta and N.-C. Yeh. The work was supported in part by NSERC, CIfAR (M.F.), DFG through SFB 608 (H.W.), the Packard Foundation and the Research Corporation (G.R.).

Author information

Authors and Affiliations

Authors

Contributions

T.P.B. and H.W. contributed equally to this work. T.P.B. carried out the semiclassical analysis, H.W. carried out the lattice computations and G.R. and M.F. advised.

Corresponding author

Correspondence to T. Pereg-Barnea.

Supplementary information

Supplementary Information

Supplementary Information (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereg-Barnea, T., Weber, H., Refael, G. et al. Quantum oscillations from Fermi arcs. Nature Phys 6, 44–49 (2010). https://doi.org/10.1038/nphys1431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing