Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Confinement of fractional quantum number particles in a condensed-matter system

Abstract

The concept of confinement states that in certain systems the constituent particles are bound together by an interaction for which the strength increases with increasing particle separation. One of the consequences of this is that these individual particles cannot be observed directly. The most famous example of confinement is found in particle physics where baryons and mesons are produced by the confinement of quarks. However, similar phenomena can occur in condensed-matter physics systems such as spin ladders that consist of two spin-1/2 antiferromagnetic chains coupled together by spin exchange interactions. Excitations of individual chains (spinons) carrying spin S=1/2, are confined by even an infinitesimal interchain coupling. Most ladders studied so far cannot illustrate this process because the large strength of their interchain coupling suppresses the spinon excitations at all energy scales. Here we present neutron scattering experiments for a weakly coupled ladder material. At high energies the behaviour of this system approaches that of individual chains, but at low energies it is dominated by the integral spin excitations of strongly coupled chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of confinement on a ladder and the structure and magnetic interactions of CaCu2O3.
Figure 2: High-energy inelastic neutron scattering data for CaCu2O3.
Figure 3: Low-energy inelastic neutron scattering data for CaCu2O3.
Figure 4: Comparison between data and theory.

Similar content being viewed by others

References

  1. Greiner, W. & Schafer, A. Quantum Chromodynamics (Springer, 1994).

    Book  Google Scholar 

  2. Gell-Mann, M. The Quark and the Jaguar (Owl Books, 1995).

    MATH  Google Scholar 

  3. Fonseca, P. & Zamolodchikov, A. J. Stat. Phys. 110, 527–590 (2003).

    Article  Google Scholar 

  4. Delfino, G. & Mussardo, G. Nonintegrable quantum field theories as perturbations of certain integrable models. Nucl. Phys. B 473, 469–508 (1996).

    Article  ADS  Google Scholar 

  5. Delfino, G. & Mussardo, G. Nonintegrable aspects of the multifrequency Sine–Gordon model. Nucl. Phys. B 516, 675–703 (1998).

    Article  ADS  Google Scholar 

  6. Shelton, D. G., Nersesyan, A. A. & Tsvelik, A. M. Antiferromagnetic spin ladders: Crossover between spin S=1/2 and S=1 chains. Phys. Rev. B 53, 8521–8532 (1996).

    Article  ADS  Google Scholar 

  7. Greiter, M. Fictitious flux confinement: Magnetic pairing in coupled spin chains or planes. Phys. Rev. B 66, 054505 (2002).

    Article  ADS  Google Scholar 

  8. Notbohm, S. et al. One- and two-triplon spectra of a cuprate ladder. Phys. Rev. Lett. 98, 027403 (2007).

    Article  ADS  Google Scholar 

  9. Schmidt, K. P. & Uhrig, G. S. Spectral properties of magnetic excitations in cuprate two-leg ladder systems. Mod. Phys. Lett. B 19, 1179–1205 (2005).

    Article  ADS  Google Scholar 

  10. Windt, M. et al. Observation of two-magnon bound states in the two-leg ladders of (Ca,La)14Cu24O41 . Phys. Rev. Lett. 87, 127002 (2001).

    Article  ADS  Google Scholar 

  11. Nersesyan, A. A. & Tsvelik, A. M. One-dimensional spin liquid without magnon excitations. Phys. Rev. Lett. 78, 3939–3942 (1997).

    Article  ADS  Google Scholar 

  12. Witten, E. Non-abelian bosonization in 2 dimensions. Commun. Math. Phys. 92, 455–472 (1984).

    Article  ADS  Google Scholar 

  13. Novikov, S. P. Multivalued functions and functionals—the analog of Morse-theory. Dokl. Akad. Nauk SSSR 260, 31–35 (1981).

    MathSciNet  Google Scholar 

  14. Moore, G. & Read, N. Nonabelions in fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  15. Greiter, M., Wen, X.-G. & Wilczek, F. Paired Hall states. Nucl. Phys. B 374, 567–614 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  16. Takhtajan, L. A. The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins. Phys. Lett. A 87, 479–482 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  17. Babujian, H. M. Exact solution of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model. Nucl. Phys. B 215, 317–336 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  18. Goiran, M. et al. High-field ESR studies of the quantum spin magnet CaCu2O3 . New J. Phys. 8, 74 (2006).

    Article  ADS  Google Scholar 

  19. Calzado, C. J., de Graaf, C., Bordas, E., Caballol, R. & Malrieu, J.-P. Four-spin cyclic exchange in spin ladder cuprates. Phys. Rev. B 67, 132409 (2003).

    Article  ADS  Google Scholar 

  20. Bordas, E., de Graaf, C., Caballol, R. & Calzado, C. J. Electronic structure of CaCu2O3: Spin ladder versus one-dimensional spin chain. Phys. Rev. B 71, 045108 (2005).

    Article  ADS  Google Scholar 

  21. Wolf, M. et al. Magnetism in pseudo-two-leg ladder compound CaCu2O3 . J. Magn. Magn. Mater. 290, 314–317 (2005).

    Article  ADS  Google Scholar 

  22. Kiryukhin, V. et al. Magnetic properties of the S=1/2 quasi-one-dimensional antiferromagnet CaCu2O3 . Phys. Rev. B 63, 144418 (2001).

    Article  ADS  Google Scholar 

  23. Knizhnik, V. G. & Zamolodchikov, A. B. Current algebra and Wess–Zumino model in two dimensions. Nucl. Phys. B 247, 83–103 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. Schulz, H. J. Phase diagrams and correlation exponents of spin chains with arbitrary spin quantum number. Phys. Rev. B 34, 6372–6385 (1986).

    Article  ADS  Google Scholar 

  25. Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nature Mater. 4, 329–334 (2005).

    Article  ADS  Google Scholar 

  26. Caux, J.-S. & Hagemans, R. The four-spinon dynamical structure factor of the Heisenberg chain. J. Stat. Mech. P12013 (2006).

  27. Sekar, C., Krabbes, G. & Teresiak, A. Effect of Zn-doping on crystal growth structure of the pseudo-ladder compound. J. Cryst. Growth 273, 403–411 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. A. Nersesyan, F. H. L. Essler, J.-S. Caux, R. Coldea and T. M. Rice for interesting discussions. E. M. Wheeler helped with the initial data analysis. The work was supported by the US DOE under contract number DE-AC02-98 CH 10886 (A.M.T.). A.M.T. also thanks the Galileo Galilei Institute for Theoretical Physics for kind hospitality and INFN for partial support during the completion of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.S., G.K. and B.B. grew the crystals. B.L., S.N., D.A.T., T.G.P. and M.R. did the experiments. Data analysis was carried out by B.L., theory was done by A.M.T. and the article was written by A.M.T. and B.L.

Corresponding authors

Correspondence to Bella Lake or Alexei M. Tsvelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, B., Tsvelik, A., Notbohm, S. et al. Confinement of fractional quantum number particles in a condensed-matter system. Nature Phys 6, 50–55 (2010). https://doi.org/10.1038/nphys1462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1462

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing