Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-injection Hall effect in a planar photovoltaic cell

Abstract

Electrical detection of spin-polarized transport in semiconductors is one of the key prerequisites for successful incorporation of spin in semiconductor microelectronics. The present schemes are based on spin-dependent transport effects within the spin generation region in the semiconductor, or on non-local detection outside the spin-injection area using a ferromagnet attached to the semiconductor. Here, we report that polarized injection of carriers can be detected by transverse electrical signals directly along the semiconducting channel, both inside and outside the injection area, without disturbing the spin-polarized current or using magnetic elements. Our planar p–n diode microdevices enable us to demonstrate Hall effect symmetries and large magnitudes of the measured effect. Supported by microscopic calculations, we infer that the observed spin-injection Hall effect reflects spin dynamics induced by an internal spin–orbit field and is closely related to the anomalous and spin Hall effects. The spin-injection Hall effect is observed up to high temperatures and our devices represent a realization of a non-magnetic spin-photovoltaic polarimeter that directly converts polarization of light into transverse voltage signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Devices, schematic diagrams of the experiment and observation of the SIHE.
Figure 2: Variable SIHE signals along the channel and linear dependence of the SIHE on the degree of polarization.
Figure 3: Measurements of the symmetries of the Hall signals.
Figure 4: Measurements on the 2DHG Hall probe.
Figure 5: Temperature dependence of the measured SIHE and theoretical modelling.

Similar content being viewed by others

References

  1. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  ADS  Google Scholar 

  2. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  3. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  ADS  Google Scholar 

  4. Weber, C. P. et al. Non-diffusive spin dynamics in a two-dimensional electron gas. Phys. Rev. Lett. 98, 076604 (2007).

    Article  ADS  Google Scholar 

  5. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  ADS  Google Scholar 

  6. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  7. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  ADS  Google Scholar 

  8. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  ADS  Google Scholar 

  9. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  ADS  Google Scholar 

  10. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  11. Chazalviel, J. N. Spin-dependent Hall effect in semiconductors. Phys. Rev. B 11, 3918–3934 (1975).

    Article  ADS  Google Scholar 

  12. Ohno, H., Munekata, H., Penney, T., von Molnár, S. & Chang, L. L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    Article  ADS  Google Scholar 

  13. Cumings, J. et al. Tunable anomalous Hall effect in a nonferromagnetic system. Phys. Rev. Lett. 96, 196404 (2006).

    Article  ADS  Google Scholar 

  14. Miah, M. I. Observation of the anomalous Hall effect in GaAs. J. Phys. D: Appl. Phys. 40, 1659–1663 (2007).

    Article  ADS  Google Scholar 

  15. Ganichev, S. D. et al. Conversion of spin into directed electric current in quantum wells. Phys. Rev. Lett. 86, 4358–4361 (2001).

    Article  ADS  Google Scholar 

  16. Hammar, P. R. & Johnson, M. Detection of spin-polarized electrons injected into a two-dimensional electron gas. Phys. Rev. Lett. 88, 066806 (2002).

    Article  ADS  Google Scholar 

  17. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  ADS  Google Scholar 

  18. Huang, B., Monsma, D. J. & Appelbaum, I. Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007).

    Article  ADS  Google Scholar 

  19. Wunderlich, J. et al. Influence of geometry on domain wall propagation in a mesoscopic wire. IEEE Trans. Mag. 37, 2104–2107 (2001).

    Article  ADS  Google Scholar 

  20. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  ADS  Google Scholar 

  21. Nomura, K. et al. Edge spin accumulation in semiconductor two-dimensional hole gases. Phys. Rev. B 72, 245330 (2005).

    Article  ADS  Google Scholar 

  22. Kaestner, B., Hasko, D. G. & Williams, D. A. Design of quasi-lateral p–n junction for optical spin-detection in low-dimensional systems. Preprint at <http://arxiv.org/abs/cond-mat/0411130> (2004).

  23. Žutić, I., Fabian, J. & Sarma, S. D. Spin-polarized transport in inhomogeneous magnetic semiconductors: Theory of magnetic/nonmagnetic p–n junctions. Phys. Rev. Lett. 88, 066603 (2002).

    Article  ADS  Google Scholar 

  24. Kondo, T., Hayafuji, J. & Munekata, H. Investigation of spin voltaic effect in a pn heterojunction. Jpn. J. Appl. Phys. 45, L663–L665 (2006).

    Article  ADS  Google Scholar 

  25. Knap, W. et al. Weak antilocalization and spin precession in quantum wells. Phys. Rev. B 53, 3912–3924 (1996).

    Article  ADS  Google Scholar 

  26. Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

    Book  Google Scholar 

  27. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    Article  ADS  Google Scholar 

  28. Bernevig, B. A., Orenstein, J. & Zhang, S.-C. An exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    Article  ADS  Google Scholar 

  29. Nozieres, P. & Lewiner, C. A simple theory of the anomalous Hall effect in semiconductors. J. Phys. France 34, 901–915 (1973).

    Article  Google Scholar 

  30. Crépieux, A. & Bruno, P. Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation. Phys. Rev. B 64, 014416 (2001).

    Article  ADS  Google Scholar 

  31. Borunda, M. et al. Absence of skew scattering in two-dimensional systems: Testing the origins of the anomalous Hall effect. Phys. Rev. Lett. 99, 066604 (2007).

    Article  ADS  Google Scholar 

  32. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  33. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  34. Žutić, I., Fabian, J. & Erwin, S. C. Spin injection and detection in silicon. Phys. Rev. Lett. 97, 026602 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Rozkotová, Z. Výborný, V. Jurka and K. Hruška for experimental assistance, M. Borunda, A. Kovalev and S.-C. Zhang for fruitful discussions and acknowledge support from EU Grant FP7-215368 SemiSpinNet, from Czech Republic Grants FON/06/E001, FON/06/E002, AV0Z10100521, KAN400100652, LC510, and Preamium Academiae, and from US Grants ONR-N000140610122, DMR-0547875 and SWAN-NRI. J.S. is a Cottrell Scholar of Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

Device fabrications: A.C.I., J.W., V.N., B.K.; experiments and data analysis: J.W., B.G.P, X.L.X., T.J., J.S.; theory: J.S., L.P.Z., T.J., J.W.; writing: T.J., J.S., J.W.; project planning: J.W., A.C.I., T.J., J.S.

Corresponding author

Correspondence to J. Wunderlich.

Supplementary information

Supplementary Information

Supplementary Information (PDF 736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, J., Irvine, A., Sinova, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nature Phys 5, 675–681 (2009). https://doi.org/10.1038/nphys1359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing