Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mimicking celestial mechanics in metamaterials

Abstract

Einstein’s general theory of relativity establishes equality between matter–energy density and the curvature of spacetime. As a result, light and matter follow natural paths in the inherent spacetime and may experience bending and trapping in a specific region of space. So far, the interaction of light and matter with curved spacetime has been predominantly studied theoretically and through astronomical observations. Here, we propose to link the newly emerged field of artificial optical materials to that of celestial mechanics, thus opening the way to investigate light phenomena reminiscent of orbital motion, strange attractors and chaos, in a controlled laboratory environment. The optical–mechanical analogy enables direct studies of critical light/matter behaviour around massive celestial bodies and, on the other hand, points towards the design of novel optical cavities and photon traps for application in microscopic devices and lasers systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical attractors and PBHs.
Figure 2: Mimicking the PBH electromagnetic phenomenon in the laboratory.
Figure 3: CIPTs based on air–GaInAsP composite media.

Similar content being viewed by others

References

  1. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  2. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  3. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8, 247–265 (2006).

    Article  ADS  Google Scholar 

  6. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  7. Kox, A. J. et al. (eds) The Collected Papers of Albert Einstein Vol. 6 (Princeton Univ. Press, 1997).

  8. Einstein, A. Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936).

    Article  ADS  Google Scholar 

  9. de Maupertuis, P. L. M. Accord de différentes lois de la nature qui avaient jusqu’ici paru incompatibles. Mém. As. Sc. Paris 417–427 (1744).

  10. Evans, J. The ray form of Newton’s law of motion. Am. J. Phys. 61, 347–350 (1993).

    Article  ADS  Google Scholar 

  11. Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev. 118, 1396–1408 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  12. Kildishev, A. V. & Shalaev, V. M. Engineering space for light via transformation optics. Opt. Lett. 33, 43–45 (2008).

    Article  ADS  Google Scholar 

  13. Valentine, J. et al. Three dimensional optical metamaterial exhibiting negative refractive index. Nature 455, 376–379 (2008).

    Article  ADS  Google Scholar 

  14. Shapiro, S. L. & Teukolsky, S. A. White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, 1983).

    Book  Google Scholar 

  15. Leonhardt, U. & Piwnicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000).

    Article  ADS  Google Scholar 

  16. Visser, M. Comment on “Relativistic effects of light in moving media with extremely low group velocity”. Phys. Rev. Lett. 85, 5252–5252 (2000).

    Article  ADS  Google Scholar 

  17. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  18. Tsakmakidis, K. L., Boardman, A. D. & Hess, O. Can light be stopped in realistic metamaterials? Nature 455, E11–E12 (2008).

    Article  ADS  Google Scholar 

  19. Bashevoy, M., Fedotov, V. & Zheludev, N. Optical whirlpool on an absorbing metallic nanoparticle. Opt. Express 13, 8372–8379 (2005).

    Article  ADS  Google Scholar 

  20. Hau, L. V. et al. Light speed reduction to 17 m s−1 in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  21. Levinstein, M., Rumyantsev, S. & Shur, M. (eds) Handbook Series on Semiconductor Parameters Vol. 1, 2 (World Scientific, 1996, 1999).

  22. Bertrand, J. Mecanique analytique. C. R. Acad. Sci. 77, 849–853 (1873).

    Google Scholar 

  23. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  24. Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  25. Wu, G. Nonlinearity and Chaos in Molecular Vibrations (Elsevier, 2005).

    Google Scholar 

  26. Costantino, R. F., Desharnais, R. A., Cushing, J. M. & Dennis, B. Chaotic dynamics in an insect population. Science 275, 389–391 (1997).

    Article  Google Scholar 

  27. Zheludev, N. I. Polarization instability and multistability in nonlinear optics. Usp. Fiz. Nauk 157, 683–717 (1989).

    Article  Google Scholar 

  28. Malhotra, R., Holman, M. & Ito, T. Chaos and stability of the solar system. Proc. Natl Acad. Sci. USA 8, 12342 (2001).

    Article  ADS  Google Scholar 

  29. Islam, M. N., Ippen, E. P., Burkhardt, E. G. & Bridges, T. J. Picosecond nonlinear absorption and four-wave mixing in GaInAsP. Appl. Phys. Lett. 47, 1042–1044 (1985).

    Article  ADS  Google Scholar 

  30. Lucchetti, L. et al. Colossal optical nonlinearity in dye doped liquid crystals. Opt. Commun. 233, 417–424 (2004).

    Article  ADS  Google Scholar 

  31. Brzozowski, L. et al. Direct measurements of large near-band edge nonlinear index change from 1.48 to 1.55 μm in InGaAs/InAlGaAs multiquantum wells. Appl. Phys. Lett. 82, 4429–4431 (2003).

    Article  ADS  Google Scholar 

  32. Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. (Leipzg) 24, 636–679 (1935).

    Article  ADS  Google Scholar 

  33. Maxwell-Garnett, J. C. Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. Lond. 203, 385–420 (1904).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by US Army Research Office ARO MURI program 50432–PH-MUR, the NSF Nano-scale Science and Engineering Center (NSEC) under Grant No. CMMI-0751621 and Louisiana Board of Regents under contract number LEQSF (2007-12)-ENH-PKSFI-PRS-01. We would also like to thank G. Bartal and D. Pile for important discussions and assistance.

Author information

Authors and Affiliations

Authors

Contributions

D.A.G. conceived and implemented the theory and numerical simulations, designed the DOM and CIPT media and prepared the manuscript; S.Z. and X.Z. contributed extensively in the data analyses and conceptualization, and edited the manuscript.

Corresponding author

Correspondence to Xiang Zhang.

Supplementary information

Supplementary Information

Supplementary Information (PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genov, D., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nature Phys 5, 687–692 (2009). https://doi.org/10.1038/nphys1338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing