Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A phonon laser

Abstract

Red-detuned laser pumping of an atomic resonance will cool the motion of an ion or atom. The complementary regime of blue-detuned pumping is investigated in this work using a single, trapped Mg+ ion interacting with two laser beams, tuned above and below resonance. Widely thought of as a regime of heating, theory and experiment instead show that stimulated emission of centre-of-mass phonons occurs, providing saturable amplification of the motion. A threshold for transition from thermal to coherent oscillating motion has been observed, thus establishing this system as a mechanical analogue to an optical laser—a phonon laser. Such a system has been sought in many different physical contexts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion-trap illustration, observation of coherent motion and physical origin of stimulated phonon emission for the single-ion phonon laser.
Figure 2: A comparison of measured and predicted ion motion as a function of pumping that illustrates threshold behaviour and increasing coherent motion for pumping above threshold.
Figure 3: A comparison of measured and predicted ion motion as a function of pumping that illustrates a regime of anomalous amplification saturation.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  ADS  Google Scholar 

  3. Helmerson, K. & Phillips, W. D. Cooling, trapping and manipulation of atoms and Bose–Einstein condensates: Applications to metrology. Riv. Nuovo Cimento 31, 141–186 (2008).

    Google Scholar 

  4. Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008).

    Article  ADS  Google Scholar 

  5. Cohen-Tannoudji, C. N. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

    Article  ADS  Google Scholar 

  6. Hänsch, T. W. & Schawlow, A. L. Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975).

    Article  ADS  Google Scholar 

  7. Wineland, D. & Dehmelt, H. Proposed 1014 delta upsilon less than upsilon laser fluorescence spectroscopy on t1+ mono-ion oscillator iii. Bull. Am. Phys. Soc. 20, 637–637 (1975).

    Google Scholar 

  8. Wineland, D. J., Drullinger, R. E. & Walls, F. L. Radiation pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639–1642 (1978).

    Article  ADS  Google Scholar 

  9. Neuhauser, W., Hohenstatt, M., Toschek, P. & Dehmelt, H. G. Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233–236 (1978).

    Article  ADS  Google Scholar 

  10. Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  11. Javanainen, J. Fundamentals of Laser Interactions: Proceedings of a Seminar Held at Obergurgl, Austria, February 24–March 2 Vol. 229, 249–258 (Springer, 1985).

    Book  Google Scholar 

  12. Sauter, T., Gilhaus, H., Neuhauser, W., Blatt, R. & Toschek, P. Kinetics of a single trapped ion—multistability and stimulated 2-photon light force. Europhys. Lett. 7, 317–322 (1988).

    Article  ADS  Google Scholar 

  13. Quint, W. Chaos und Ordnung von Lasergekühlten Ionen in einer Paul-Falle. PhD thesis, Ludwig Maximillians Univ. (1990).

  14. Loftus, T. H., Ido, T., Ludlow, A. D., Boyd, M. M. & Ye, J. Narrow line cooling: Finite photon recoil dynamics. Phys. Rev. Lett. 93, 073003 (2004).

    Article  ADS  Google Scholar 

  15. Loftus, T. H., Ido, T., Boyd, M. M., Ludlow, A. D. & Ye, J. Narrow line cooling and momentum-space crystals. Phys. Rev. A 70, 063413 (2004).

    Article  ADS  Google Scholar 

  16. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  17. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  18. Yariv, A. Quantum Electronics 307–309 (Wiley, 1975).

    Google Scholar 

  19. Sargent, M., Scully, M. O. & Lamb, W. E. Laser Physics 45–54 (Addison-Wesley, 1974).

    Google Scholar 

  20. Van der Pol, B. A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710 (1920).

    Google Scholar 

  21. Wallentowitz, S., Vogel, W., Siemers, I. & Toschek, P. E. Vibrational amplification by stimulated emission of radiation. Phys. Rev. A 54, 943–946 (1996).

    Article  ADS  Google Scholar 

  22. Liu, H. C. et al. Coupled electron–phonon modes in optically pumped resonant intersubband lasers. Phys. Rev. Lett. 90, 077402 (2003).

    Article  ADS  Google Scholar 

  23. Bargatin, I. & Roukes, M. L. Nanomechanical analog of a laser: Amplification of mechanical oscillations by stimulated Zeeman transitions. Phys. Rev. Lett. 91, 138302 (2003).

    Article  ADS  Google Scholar 

  24. Chudnovsky, E. M. & Garanin, D. A. Phonon superradiance and phonon laser effect in nanomagnets. Phys. Rev. Lett. 93, 257205 (2004).

    Article  ADS  Google Scholar 

  25. Chen, J. & Khurgin, J. B. Feasibility analysis of phonon lasers. IEEE J. Quantum Electron. 39, 600–607 (2003).

    Article  ADS  Google Scholar 

  26. Tucker, E. B. Amplification of 9.3-kMc/sec ultrasonic pulses by maser action in ruby. Phys. Rev. Lett. 6, 547–547 (1961).

    Article  ADS  Google Scholar 

  27. Hu, P. Stimulated emission of 29-cm−1 phonons in ruby. Phys. Rev. Lett. 44, 417–420 (1980).

    Article  ADS  Google Scholar 

  28. Fokker, P. A., Dijkhuis, J. I. & deWijn, H. W. Stimulated emission of phonons in an acoustical cavity. Phys. Rev. B 55, 2925–2933 (1997).

    Article  ADS  Google Scholar 

  29. Bron, W. E. & Grill, W. Stimulated phonon emission. Phys. Rev. Lett. 40, 1459–1463 (1978).

    Article  ADS  Google Scholar 

  30. Kent, A. J. et al. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: Observation of phonon resonance. Phys. Rev. Lett. 96, 215504 (2006).

    Article  ADS  Google Scholar 

  31. Herrmann, M. et al. Frequency metrology on single trapped ions in the weak binding limit: The 3s(1/2)–3p(3/2) transition in Mg-24(+). Phys. Rev. Lett. 102, 1–4 (2009).

    Article  Google Scholar 

  32. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    ADS  Google Scholar 

  33. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  34. Yariv, A. Quantum Electronics 56–57 (Wiley, 1975).

    Google Scholar 

  35. Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, 1787–1805 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  36. Dehmelt, H., Nagourney, W. & Sandberg, J. Self-excited mono-ion oscillator. Proc. Natl Acad. Sci. USA 83, 5761–5763 (1986).

    Article  ADS  Google Scholar 

  37. Kaplan, A. E. Single-particle motional oscillator powered by laser. Opt. Express 17, 10035–10043 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Toschek for review and comments on the manuscript. K.V. gratefully acknowledges support from the Alexander von Humboldt Foundation and also thanks the California Institute of Technology. T.W.H. gratefully acknowledges support by the Max-Planck Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.H., S.K., V.B. and G.S. carried out measurements. K.V., M.H. and Th.U. carried out simulations. K.V., M.H., Th.U. and T.W.H. developed the concepts. All authors worked together to plan the measurements and write the manuscript.

Corresponding authors

Correspondence to K. Vahala or Th. Udem.

Supplementary information

Supplementary Information

Supplementary Information (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vahala, K., Herrmann, M., Knünz, S. et al. A phonon laser. Nature Phys 5, 682–686 (2009). https://doi.org/10.1038/nphys1367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing