Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-sensitive addressing and control of field-insensitive neutral-atom qubits

Abstract

The establishment of a scalable scheme for quantum computing with addressable and long-lived qubits would provide a route to harnessing the laws of quantum physics to solve classically intractable problems. The design of many proposed platforms for quantum computing is driven by competing needs: isolating the quantum system from the environment to prevent decoherence, and easily and accurately controlling the system with external fields. For example, neutral-atom optical-lattice architectures provide environmental isolation through the use of states that are robust against fluctuating external fields, yet external fields are essential for qubit addressing. Here, we demonstrate the selection of individual qubits with external fields, while the qubits are in field-insensitive superpositions. We use a spatially inhomogeneous external field to map selected qubits to a different field-insensitive superposition, minimally perturbing unselected qubits, despite the fact that the addressing field is not spatially localized. We show robust single-qubit rotations on neutral-atom qubits located at selected lattice sites. This precise coherent control should be more generally applicable to state transfer and qubit isolation in other architectures using field-insensitive qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for combining field-sensitive qubit addressability with long-lived field-insensitive ‘clock state’ qubits.
Figure 2: Qubit coherence and qubit mapping.
Figure 3: Beff and the differential shift.
Figure 4: Site-selective coherent mapping and single-qubit rotation.
Figure 5: Exploration of composite-pulse techniques for trapped neutral atoms.

Similar content being viewed by others

References

  1. Brennen, G. K., Caves, C. M., Jessen, P. S. & Deutsch, I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999).

    Article  ADS  Google Scholar 

  2. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  Google Scholar 

  3. Bloch, I. Exploring quantum matter with ultracold atoms in optical lattices. J. Phys. B 38, S629 (2005).

    Article  ADS  Google Scholar 

  4. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    Article  ADS  Google Scholar 

  5. Beugnon, J. et al. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nature Phys. 3, 696–699 (2007).

    Article  ADS  Google Scholar 

  6. Schrader, D. et al. Neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004).

    Article  ADS  Google Scholar 

  7. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold Bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  8. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    Article  ADS  Google Scholar 

  9. Hayes, D., Julienne, P. S. & Deutsch, I. H. Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007).

    Article  ADS  Google Scholar 

  10. Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007).

    Article  ADS  Google Scholar 

  11. Zhang, C., Rolston, S. L. & Sarma, S. D. Manipulation of single neutral atoms in optical lattices. Phys. Rev. A 74, 042316 (2006).

    Article  ADS  Google Scholar 

  12. Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007).

    Article  ADS  Google Scholar 

  13. Weiss, D. S. et al. Another way to approach zero entropy for a finite system of atoms. Phys. Rev. A 70, 040302 (2004).

    Article  ADS  Google Scholar 

  14. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  15. Taylor, J. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Phys. 1, 177–183 (2005).

    Article  ADS  Google Scholar 

  16. Sebby-Strabley, J., Anderlini, M., Jessen, P. S. & Porto, J. V. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 73, 033605 (2006).

    Article  ADS  Google Scholar 

  17. Matthews, M. R. et al. Dynamical response of a Bose–Einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett. 81, 243–247 (1998).

    Article  ADS  Google Scholar 

  18. Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950).

    Article  ADS  Google Scholar 

  19. Katori, H., Takamoto, M., Pal’chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003).

    Article  ADS  Google Scholar 

  20. Rosenbusch, P. et al. A.c. Stark shift of the Cs microwave atomic clock transitions. Phys. Rev. A 79, 013404 (2009).

    Article  ADS  Google Scholar 

  21. Flambaum, V. V., Dzuba, V. A. & Derevianko, A. Magic frequencies for cesium primary-frequency standard. Phys. Rev. Lett. 101, 220801 (2008).

    Article  ADS  Google Scholar 

  22. Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

    Article  ADS  Google Scholar 

  23. Uhrig, G. S. Keeping a quantum bit alive by optimized pi-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007).

    Article  ADS  Google Scholar 

  24. Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    Article  ADS  Google Scholar 

  25. Deutsch, I. et al. Quantum transport in magneto-optical double-potential wells. J. Opt. B 2, 633–644 (2000).

    Article  ADS  Google Scholar 

  26. Lundblad, N. et al. Atoms in a radio-frequency-dressed optical lattice. Phys. Rev. Lett. 100, 150401 (2008).

    Article  ADS  Google Scholar 

  27. Mandel, O. et al. Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003).

    Article  ADS  Google Scholar 

  28. Levitt, M. Composite pulses. Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).

    Article  ADS  Google Scholar 

  29. Cummins, H. K., Llewellyn, G. & Jones, J. A. Tackling systematic errors in quantum logic gates with composite rotations. Phys. Rev. A 67, 042308 (2003).

    Article  ADS  Google Scholar 

  30. Rakreungdet, W. et al. Accurate microwave control and real-time diagnostics of neutral-atom qubits. Phys. Rev. A 79, 022316 (2009).

    Article  ADS  Google Scholar 

  31. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article  ADS  Google Scholar 

  32. Gerlach, W. & Stern, O. Der experimentelle nachweis der richtungsquantelung im magnetfeld. Z. Phys. A 9, 349–532 (1922).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. D. Phillips for a critical reading, P. Jessen and I. Deutsch for helpful discussion and S. Swift and E. Huang for technical assistance with our direct-digital-synthesis hardware. This work was partially supported by DTO and ONR. N.L. acknowledges support from the National Research Council Research Associateship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lundblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundblad, N., Obrecht, J., Spielman, I. et al. Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nature Phys 5, 575–580 (2009). https://doi.org/10.1038/nphys1330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing