Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Individual topological tunnelling events of a quantum field probed through their macroscopic consequences

Abstract

Phase slips are topological fluctuations that carry the superconducting order-parameter field between distinct current-carrying states. Owing to these phase slips, superconducting nanowires acquire electrical resistance. In such wires, it is well known that at higher temperatures phase slips occur through the process of thermal barrier-crossing by the order-parameter field. At low temperatures, the general expectation is that phase slips should proceed through quantum tunnelling events, which are known as quantum phase slips. However, resistive measurements have produced evidence both for and against the occurrence of quantum phase slips. Here, we report evidence for the observation of individual quantum phase-slip events in homogeneous ultranarrow wires at high bias currents. We accomplish this through measurements of the distribution of switching currents for which the width exhibits a rather counter-intuitive, monotonic increase with decreasing temperature. Importantly, measurements show that in nanowires with larger critical currents, quantum fluctuations dominate thermal fluctuations up to higher temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic sample characterization at high and low temperatures.
Figure 2: Switching-current distributions at different temperatures.
Figure 3: Measured switching rates from the superconducting state and predictions of the stochastic overheating model.
Figure 4: Stochastic phase slips, switching rates and the quantum behaviour at low temperatures.

Similar content being viewed by others

References

  1. Leggett, A. J. Prospects in ultralow temperature physics. J. Phys. Colloq. 39, 1264–1269 (1978).

    Article  Google Scholar 

  2. Leggett, A. J. Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  3. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).

    Article  ADS  Google Scholar 

  4. Leggett, A. J. Lesson of Quantum Theory. N. Bohr Centenary Symposium 35–57 (North-Holland, 1986).

    Google Scholar 

  5. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  Google Scholar 

  6. Voss, R. F. & Webb, R. A. Macroscopic quantum tunneling in 1-μm Nb Josephson junctions. Phys. Rev. Lett. 47, 265–268 (1981).

    Article  ADS  Google Scholar 

  7. Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).

    Article  ADS  Google Scholar 

  8. Inomata, K. et al. Macroscopic quantum tunneling in a d-wave high-TC Bi2Sr2CaCu2O8+δ superconductor. Phys. Rev. Lett. 95, 107005 (2005).

    Article  ADS  Google Scholar 

  9. Wallraff, A. et al. Quantum dynamics of a single vortex. Nature 425, 155–158 (2003).

    Article  ADS  Google Scholar 

  10. Wernsdorfer, W. et al. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014–4017 (1997).

    Article  ADS  Google Scholar 

  11. Shor, P. Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (1994).

    Book  Google Scholar 

  12. Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computing 26, 1484–1509 (1997).

    Article  MathSciNet  Google Scholar 

  13. Mooij, J. E. & Harmans, C. J. P. M. Phase-slip flux qubits. New J. Phys. 7, 219 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. Giordano, N. Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61, 2137–2140 (1988).

    Article  ADS  Google Scholar 

  15. Little, W. A. Decay of persistent currents in small superconductors. Phys. Rev. 156, 396–403 (1967).

    Article  ADS  Google Scholar 

  16. Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nature Phys. 2, 169–172 (2006).

    Article  ADS  Google Scholar 

  17. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000).

    Article  ADS  Google Scholar 

  18. Bollinger, A. T., Dinsmore, R. C. III, Rogachev, A. & Bezryadin, A. Determination of the superconductor–insulator phase diagram for one-dimensional wires. Phys. Rev. Lett. 101, 227003 (2008).

    Article  ADS  Google Scholar 

  19. Zaikin, A. D., Golubev, D. S., vanOtterlo, A. & Zimanyi, G. T. Quantum phase slips and transport in ultrathin superconducting wires. Phys. Rev. Lett. 78, 1552–1555 (1997).

    Article  ADS  Google Scholar 

  20. Meidan, D., Oreg, Y. & Refael, G. Sharp superconductor–insulator transition in short wires. Phys. Rev. Lett. 98, 187001 (2007).

    Article  ADS  Google Scholar 

  21. Khlebnikov, S. & Pryadko, L. P. Quantum phase slips in the presence of finite-range disorder. Phys. Rev. Lett. 95, 107007 (2005).

    Article  ADS  Google Scholar 

  22. Khlebnikov, S. Quantum phase slips in a confined geometry. Phys. Rev. B 77, 014505 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  23. Lau, C. N., Markovic, N., Bockrath, M., Bezryadin, A. & Tinkham, M. Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87, 217003 (2001).

    Article  ADS  Google Scholar 

  24. Altomare, F., Chang, A. M., Melloch, M. R., Hong, Y. & Tu, C. W. Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires. Phys. Rev. Lett. 97 17001 (2006).

  25. Zgirski, M., Riikonen, K.-P., Touboltsev, V. & Arutyunov, K. Yu. Quantum fluctuations in ultranarrow superconducting aluminum nanowires. Phys. Rev. B 77, 054508 (2008).

    Article  ADS  Google Scholar 

  26. Bollinger, A. T., Rogachev, A. & Bezryadin, A. Dichotomy in short superconducting nanowires: Thermal phase slippage versus coulomb blockade. Europhys. Lett. 76, 505–511 (2006).

    Article  ADS  Google Scholar 

  27. Rogachev, A. & Bezryadin, A. Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes. Appl. Phys. Lett. 83, 512–514 (2003).

    Article  ADS  Google Scholar 

  28. Rogachev, A., Bollinger, A. T. & Bezryadin, A. Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires. Phys. Rev. Lett. 94, 17004 (2005).

    Article  ADS  Google Scholar 

  29. Zgirski, M. & Arutyunov, K. Yu. Experimental limits of the observation of thermally activated phase-slip mechanism in superconducting nanowires. Phys. Rev. B 75 172509 (2007).

  30. Shah, N., Pekker, D. & Goldbart, P. M. Inherent stochasticity of superconductive–resistive switching in nanowires. Phys. Rev. Lett. 101, 207001 (2008).

    Article  ADS  Google Scholar 

  31. Tinkham, M., Free, J. U., Lau, C. N. & Markovic, N. Hysteretic I–V curves of superconducting nanowires. Phys. Rev. B 68, 134515 (2003).

    Article  ADS  Google Scholar 

  32. Langer, J. S. & Ambegaokar, V. Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164, 498–510 (1967).

    Article  ADS  Google Scholar 

  33. McCumber, D. E. & Halperin, B. I. Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054–1070 (1970).

    Article  ADS  Google Scholar 

  34. Tinkham, M. Introduction to Superconductivity 2nd edn, Ch. 8 (McGraw-Hill, 1996).

    Google Scholar 

  35. Fulton, T. A. & Dunkleberger, L. N. Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760–4768 (1974).

    Article  ADS  Google Scholar 

  36. Rogachev, A., Bollinger, A. T. & Bezryadin, A. Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires. Phys. Rev. Lett. 94, 017004 (2005).

    Article  ADS  Google Scholar 

  37. Tinkham, M. & Lau, C. N. Quantum limit to phase coherence in thin superconducting wires. Appl. Phys. Lett. 80, 2946–2948 (2002).

    Article  ADS  Google Scholar 

  38. Bollinger, A. T., Rogachev, A., Remeika, M. & Bezryadin, A. Effect of morphology on the superconductor–insulator transition in one-dimensional nanowires. Phys. Rev. B 69, 180503 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy, Division of Materials Sciences under Award No. DE-FG02-07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. M.-H.B. acknowledges the support of the Korea Research Foundation Grant No. KRF-2006-352-C00020.

Author information

Authors and Affiliations

Authors

Contributions

M.S. fabricated all of the nanowire samples; M.S., M.-H.B., A.R. and A.B. carried out all of the measurements; M.S., M.-H.B., D.P., N.S., T.-C.W., P.G. and A.B. worked on the theoretical modelling, data analysis and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mitrabhanu Sahu.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1503 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, M., Bae, MH., Rogachev, A. et al. Individual topological tunnelling events of a quantum field probed through their macroscopic consequences. Nature Phys 5, 503–508 (2009). https://doi.org/10.1038/nphys1276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing