Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diffraction-limited performance and focusing of high harmonics from relativistic plasmas

Abstract

When a pulse of light reflects from a mirror that is travelling close to the speed of light, Einstein’s theory of relativity predicts that it will be up-shifted to a substantially higher frequency and compressed to a much shorter duration. This scenario is realized by the relativistically oscillating plasma surface generated by an ultraintense laser focused onto a solid target. Until now, it has been unclear whether the conditions necessary to exploit such phenomena can survive such an extreme interaction with increasing laser intensity. Here, we provide the first quantitative evidence to suggest that they can. We show that the occurrence of surface smoothing on the scale of the wavelength of the generated harmonics, and plasma denting of the irradiated surface, enables the production of high-quality X-ray beams focused down to the diffraction limit. These results improve the outlook for generating extreme X-ray fields, which could in principle extend to the Schwinger limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of HOHG emitted from plasma surfaces.
Figure 2: Diffraction-limited performance of harmonic emission from relativistically oscillating plasma surfaces.
Figure 3: Comparison of harmonic emission under conditions of varying target root-mean-square roughness over sub-λLaser scale (φr.m.s.).
Figure 4: Background-subtracted lineouts of harmonic spectra from targets with φr.m.s.<1 nm (Fig. 3a) and φr.m.s.18 nm (Fig. 3b).
Figure 5: Angular distribution of harmonic radiation emitted from targets with φr.m.s.<1 nm and φr.m.s.18 nm.
Figure 6: Expected level of denting from PIC code simulations for conditions similar to those used in experiments.

Similar content being viewed by others

References

  1. Galayda, J. Linac coherent light source: Status and prospects. Proc. SPIE 5917, 591701 (2005).

    Article  Google Scholar 

  2. Vartanyants, I.A. et al. Coherent x-ray scattering and lensless imaging at the European XFEL facility. J. Synch. Rad. 14, 453–470 (2007).

    Article  Google Scholar 

  3. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  4. Neutze, R. et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  ADS  Google Scholar 

  5. Pukhov, A. Relativistic plasmas: X-rays in a flash. Nature Phys. 2, 439–440 (2006).

    Article  ADS  Google Scholar 

  6. Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    ADS  Google Scholar 

  7. Dromey, B. et al. Bright multi-KeV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007).

    Article  ADS  Google Scholar 

  8. Zepf, M., Dromey, B., Landreman, M., Foster, P. S. & Hooker, S. M. Bright quasi-phase-matched soft-X-ray harmonic radiation from argon ions. Phys. Rev. Lett. 99, 143901 (2007).

    Article  ADS  Google Scholar 

  9. Paul, A. et al. Quasi-phase-matched generation of coherent extreme-ultraviolet light. Nature 421, 51–54 (2003).

    Article  ADS  Google Scholar 

  10. Gordienko, S. et al. Relativistic Doppler effect: Universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002 (2004).

    Article  ADS  Google Scholar 

  11. Baeva, T., Gordienko, S. & Pukhov, A. Theory of high harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006).

    Article  ADS  Google Scholar 

  12. Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    Article  ADS  Google Scholar 

  13. Geissler, M. et al. 3D simulations of surface harmonic generation with few-cycle laser pulses. New J. Phys. 9, 218 (2007).

    Article  ADS  Google Scholar 

  14. Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys. 4, 130–132 (2008).

    Article  ADS  Google Scholar 

  15. Gordienko, S. et al. Coherent focusing of high harmonics: A new way towards the extreme intensities. Phys. Rev. Lett. 94, 103903 (2005).

    Article  ADS  Google Scholar 

  16. Zepf, M. et al. Role of the plasma scale length in the harmonic generation from solid targets. Phys. Rev. E 58, R5253–R5256 (1998).

    Article  ADS  Google Scholar 

  17. Bulanov, S. V., Naumova, N. M. & Pegoraro, F. Interaction of an ultrashort, relativistically intense laser-pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994).

    Article  ADS  Google Scholar 

  18. Lichters, R., Meyer-ter-Vehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

    Article  ADS  Google Scholar 

  19. Gibbon, P. Harmonic generation by femtosecond laser-solid interaction: A coherent water-window light source? Phys. Rev. Lett. 76, 50–53 (1996).

    Article  ADS  Google Scholar 

  20. Plaja, L. et al. Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface. J. Opt. Soc. Am. B 15, 1904–1911 (1998).

    Article  ADS  Google Scholar 

  21. Einstein, A. On the electrodynamics of moving bodies. Ann. Phys. Leipz. 17, 891 (1905).

    Article  ADS  Google Scholar 

  22. Zepf, M. et al. High harmonics from relativistically oscillating plasma surfaces—a high brightness attosecond source at keV photon energies. Plasma Phys. Control. Fusion 49, B149–B162 (2007).

    Article  ADS  Google Scholar 

  23. Quere, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    Article  ADS  Google Scholar 

  24. Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nature Phys. 3, 424–429 (2007).

    Article  ADS  Google Scholar 

  25. Quere, F. et al. Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 095004 (2008).

    Article  ADS  Google Scholar 

  26. Tarasevitch, A. et al. Transition to the relativistic regime in high order harmonic generation. Phys. Rev. Lett. 98, 103902 (2007).

    Article  ADS  Google Scholar 

  27. an der Brügge, D. & Pukhov, A. Propagation of relativistic surface harmonics radiation in free space. Phys. Plasmas 14, 093104 (2007).

    Article  ADS  Google Scholar 

  28. Wilks, S. C. et al. Absorption of ultra intense light pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).

    Article  ADS  Google Scholar 

  29. Norreys, P. et al. Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets. Phys. Rev. Lett. 76, 1832–1835 (1996).

    Article  ADS  Google Scholar 

  30. Lichters, R. & Meyer-ter-Vehn, J. Multiphoton processes 1996. Inst. Phys. Conf. Ser. 154, 221–230 (1997).

    Google Scholar 

  31. Dromey, B. et al. The plasma mirror—a subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75, 645–648 (2004).

    Article  ADS  Google Scholar 

  32. Carman, R. L., Forslund, D. W. & Kindel, J. M. Visible harmonics emission as a way of measuring profile steepening. Phys. Rev. Lett. 46, 29–32 (1981).

    Article  ADS  Google Scholar 

  33. Rykovanov, S. et al. Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025 (2008).

    Article  ADS  Google Scholar 

  34. Lambert, G. et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nature Phys. 4, 296–300 (2008).

    Article  Google Scholar 

  35. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  36. Heisenberg, W. & Euler, H. Consequences of Dirac theory of the positron. Z. Phys. 98, 714–732 (1936).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.Z. acknowledges support from the Royal Society. This work was supported by EPSRC and EU COST action MP0601.

Author information

Authors and Affiliations

Authors

Contributions

This experiment was carried out in the main by B.D., D.A., R.H. and Y.N. The simulations were carried out by S.G.R., with support from M.G. Experimental planning and data analysis was carried out by B.D. and M.Z.

Corresponding author

Correspondence to M. Zepf.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dromey, B., Adams, D., Hörlein, R. et al. Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nature Phys 5, 146–152 (2009). https://doi.org/10.1038/nphys1158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing