Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-induced back-action optical trapping of dielectric nanoparticles

Abstract

Optical trapping has widely affected both the physical and life sciences. Past approaches to optical trapping of nanoscale objects required large optical intensities, often above their damage threshold. To achieve more than an order of magnitude reduction in the local intensity required for optical trapping, we present a self-induced back-action (SIBA) optical trap, where the trapped object has an active role in enhancing the restoring force. We demonstrate experimentally trapping of a single 50 nm polystyrene sphere using a SIBA optical trap on the basis of the transmission resonance of a nanoaperture in a metal film. SIBA optical trapping shows a striking departure from previous approaches, which we quantify by comprehensive calculations. The SIBA optical trap enables new opportunities for non-invasive immobilization of a single nanoscale object, such as a virus or a quantum dot.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SIBA optical trapping using a nanoaperture in a metallic film.
Figure 2: Experimental trapping of 100- and 50-nm particles.
Figure 3: Numerical evaluation of SIBA trapping.
Figure 4: Trapping time evolution with the aperture diameter for 100 nm particles at 1.6 mW.

Similar content being viewed by others

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  2. Dholakia, K., Reece, P. & Gu, M. Optical micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008).

    Article  Google Scholar 

  3. Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  ADS  Google Scholar 

  4. Yin, H. et al. Transcripting against an applied force. Science 270, 1653–1657 (1995).

    Article  ADS  Google Scholar 

  5. Liu, Y., Sonek, G. J., Berns, M. W. & Tromberg, B. J. Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1,064 nm laser tweezers using microfluorometry. Biophys. J. 71, 2158–2167 (1996).

    Article  Google Scholar 

  6. Huang, L. & Martin, O. J. F. Reversal of the optical force in a plasmonic trap. Opt. Lett. 33, 3001–3003 (2008).

    Article  ADS  Google Scholar 

  7. Nieto-Vesperinas, M., Chaumet, P. C. & Rahmani, A. Near-field photonic forces. Phil. Trans. Math. Phys. Eng. Sci. 362, 719–737 (2004).

    Article  Google Scholar 

  8. Okamoto, K. & Kawata, S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83, 4534–4537 (1999).

    Article  ADS  Google Scholar 

  9. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    Article  ADS  Google Scholar 

  10. Quidant, R., Petrov, D. & Badenes, G. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett. 30, 1009–1011 (2005).

    Article  ADS  Google Scholar 

  11. Righini, M., Girard, C. & Quidant, R. Light-induced manipulation with surface plasmons. J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).

    Article  ADS  Google Scholar 

  12. Sainidou, R. & García de Abajo, F. J. Optically tunable surfaces with trapped particles in microcavities. Phys. Rev. Lett. 101, 136802 (2008).

    Article  ADS  Google Scholar 

  13. Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    Article  ADS  Google Scholar 

  14. Righini, M. et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett. 10.1021/nl803677x (2009).

  15. Kwak, E. S. et al. Optical trapping with integrated near-field apertures. J. Phys. Chem. B 108, 13607–13612 (2004).

    Article  Google Scholar 

  16. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    Article  ADS  Google Scholar 

  17. Arnold, S. et al. Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 17, 6230–6238 (2009).

    Article  ADS  Google Scholar 

  18. Vollmer, F., Arnold, S. & Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl Acad. Sci. USA 105, 20701–20704 (2008).

    Article  ADS  Google Scholar 

  19. Adams, C. S. & Riis, E. Laser cooling and trapping of neutral atoms. Prog. Quant. Electron. 21, 1–79 (1997).

    Article  ADS  Google Scholar 

  20. Pinkse, P. W. H., Fisher, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    Article  ADS  Google Scholar 

  21. Iida, T. & Ishihara, H. Theoretical study of the optical manipulation of semiconductor nanoparticles under excitonic resonance condition. Phys. Rev. Lett. 90, 057403 (2003).

    Article  ADS  Google Scholar 

  22. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  23. García-Vidal, F. J., Moreno, E., Porto, J. A. & Martín-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005).

    Article  ADS  Google Scholar 

  24. García-Vidal, F. J., Martín-Moreno, L., Moreno, E., Kumar, L. K. S. & Gordon, R. Transmission of light through a single rectangular hole in real metal. Phys. Rev. B 74, 153411 (2006).

    Article  ADS  Google Scholar 

  25. García de Abajo, F. Light transmission through a single cylindrical hole in a metallic film. Opt. Express 10, 1475–1484 (2002).

    Article  ADS  Google Scholar 

  26. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  27. Chaumet, P. C., Rahmani, A. & Nieto-Vesperinas, M. Optical trapping and manipulation of nano-objects with an apertureless probe. Phys. Rev. Lett. 88, 123601 (2002).

    Article  ADS  Google Scholar 

  28. Rohrbach, A. & Stelzer, E. H. K. Optical trapping of dielectric particles in arbitrary fields. J. Opt. Soc. Am. A. 18, 839–853 (2001).

    Article  ADS  Google Scholar 

  29. Yang, A. H. J., Lerdsuchatawanich, T. & Erickson, D. Forces and transport velocities for a particle in a slot waveguide. Nano Lett. 9, 1182–1188 (2009).

    Article  ADS  Google Scholar 

  30. Ignatovich, F. V., Topham, D. & Novotny, L. Optical detection of single particles and viruses. IEEE J. Sel. Top. Quant. Electron. 12, 1292–1300 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Sciences through Grants TEC2007-60186/MIC and CSD2007-046-NanoLight.es and Fundació CELLEX Barcelona. R.G., Y.P. and F.E. supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant. R.G. was supported for this work through a visiting professorship from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Contributions

M.L.J., R.G. and R.Q. planned the project, designed the experiment and wrote the paper. M.L.J. did the trapping experiments on samples prepared by F.E. Y.P. and R.G. carried out the numerical simulations. All of the authors participated in the analysis of the results.

Corresponding author

Correspondence to Romain Quidant.

Supplementary information

Supplementary Information

Supplementary Information (PDF 793 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juan, M., Gordon, R., Pang, Y. et al. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys 5, 915–919 (2009). https://doi.org/10.1038/nphys1422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing