Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

This article has been updated

Abstract

One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pump and measurement schemes.
Figure 2: Build-up of a gradient with two different pumping cycles.
Figure 3: Comparison of the gradient and the average nuclear field.
Figure 4: State tomography and universal gate.

Similar content being viewed by others

Change history

  • 27 October 2009

    In the version of this Article originally published online, in the final paragraph, the value of the coherence time should have been 100 μs, and the final author name in reference 28 should have been Cywinski, L., Witzel, W. M. & Das Sharma, S. These changes have been made in all versions of the Article.

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Levy, J. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. Coish, W. & Loss, D. Exchange-controlled single-electron-spin rotations in quantum dots. Phys. Rev. B 75, 161302 (2007).

    Article  ADS  Google Scholar 

  4. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  5. Hanson, R. & Burkard, G. Universal set of quantum gates for double-dot spin qubits with fixed interdot coupling. Phys. Rev. Lett. 98, 050502 (2007).

    Article  ADS  Google Scholar 

  6. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).

    Article  MathSciNet  Google Scholar 

  7. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  8. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  9. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  10. Witzel, W. M. & Sarma, S. D. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architecture. Phys. Rev. B 74, 035322 (2006).

    Article  ADS  Google Scholar 

  11. Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    Article  ADS  Google Scholar 

  12. Zhang, W., Dobrovitki, V., Al-Hassanieh, K., Dagotto, E. & Harmon, B. Hyperfine interaction induced decoherence of electron spins in quantum dots. Phys. Rev. B 74, 205313 (2006).

    Article  ADS  Google Scholar 

  13. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspace for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    Article  ADS  Google Scholar 

  14. Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Phys. 1, 177–183 (2005).

    Article  ADS  Google Scholar 

  15. Taylor, J. M. et al. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007).

    Article  ADS  Google Scholar 

  16. Petta, J. R. et al. Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett. 100, 067601 (2008).

    Article  ADS  Google Scholar 

  17. Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008).

    Article  ADS  Google Scholar 

  18. Johnson, A. C. et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005).

    Article  ADS  Google Scholar 

  19. Paget, D., Lampel, G. & Sapoval, B. Low field electron–nuclear spin coupling in gallium arsenide under optical pumping conditions. Phys. Rev. B 15, 5780–5796 (1977).

    Article  ADS  Google Scholar 

  20. Stopa, M., Krich, J. J. & Yacoby, A. Inhomogeneous nuclear spin flips. Preprint at <http://arxiv.org/abs/0905.4520v1> (2009).

  21. Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization. Phys. Rev. Lett. 99, 056804 (2007).

    Article  ADS  Google Scholar 

  22. Reilly, D. J. et al. Exchange control of nuclear spin diffusion in double quantum dots. Preprint at <http://arxiv.org/abs/0803.3082v1> (2008).

  23. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Phys. 5, 262–266 (2009).

    Article  ADS  Google Scholar 

  24. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  25. Novack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  26. Pioro-Ladriere, M. et al. Electrically driven single electron spin resonance in a slanting Zeeman field. Nature Phys. 4, 776–779 (2008).

    Article  ADS  Google Scholar 

  27. Yao, W., Liu, R. B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  ADS  Google Scholar 

  28. Cywinski, L., Witzel, W. M. & Das Sarma, S. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. Phys. Rev. Lett. 102, 057601 (2009).

    Article  ADS  Google Scholar 

  29. Coish, W., Fischer, J. & Loss, D. Exponential decay in a spin bath. Phys. Rev. B 77, 125329 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Barthel, M. Gullans, B. I. Halperin, J. J. Krich, M. D. Lukin, C. M. Marcus, D. J. Reilly, M. Stopa and J. M. Taylor for discussions. We acknowledge financial support from ARO/IARPA, the Department of Defense and the National Science Foundation under award number 0653336. This work was carried out in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765.

Author information

Authors and Affiliations

Authors

Contributions

S.F. fabricated the samples. H.B developed the measurement software. Electron-beam lithography and sample growth were carried out by D.M. and V.U., respectively. S.F., H.B. and A.Y. planned and carried out the experiment, analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Amir Yacoby.

Supplementary information

Supplementary Information

Supplementary Information (PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foletti, S., Bluhm, H., Mahalu, D. et al. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys 5, 903–908 (2009). https://doi.org/10.1038/nphys1424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing