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Computational complexity of interacting electrons
and fundamental limitations of density
functional theory
Norbert Schuch1* and Frank Verstraete2*

One of the central problems in quantum mechanics is
to determine the ground-state properties of a system of
electrons interacting through the Coulomb potential. Since its
introduction1,2, density functional theory has become the most
widely used and successful method for simulating systems
of interacting electrons. Here, we show that the field of
computational complexity imposes fundamental limitations
on density functional theory. In particular, if the associated
‘universal functional’ could be found efficiently, this would
imply that any problem in the computational complexity class
Quantum Merlin Arthur could be solved efficiently. Quantum
Merlin Arthur is the quantum version of the class NP and thus
any problem in NP could be solved in polynomial time. This
is considered highly unlikely. Our result follows from the fact
that finding the ground-state energy of the Hubbard model
in an external magnetic field is a hard problem even for a
quantum computer, but, given the universal functional, it can be
computed efficiently using density functional theory. This work
illustrates how the field of quantum computing could be useful
even if quantum computers were never built.

The difficulty of finding the ground-state properties of a large
system of interacting electrons originates both from the exponential
dimension of the underlying Hilbert space and from the fermionic
nature of the wavefunction. It is a problem encountered virtually
everywhere in quantum chemistry as well as in condensed-matter
physics: for instance, the spatial configuration of a molecule
is the one for which the energy of the interacting electrons
moving in the nuclear potential, together with the electrostatic
energy of the nuclei, becomes minimal. Similarly, a rich variety
of phenomena in solid-state physics, in particular conductance
and magnetic phenomena, can be understood by considering
electrons moving in the periodic lattice potential, including such
exciting phenomena as high-temperature superconductivity and
the fractional quantumHall effect.

A systemof N electrons is described by theHamiltonian

H =−
1
2

N∑
i=1

1i︸ ︷︷ ︸
=:T

+

∑
1≤i<j≤N

γ

|ri− rj |︸ ︷︷ ︸
=:I

+

∑
i

V (xi) (1)

(γ > 0, and xi = (ri, si) with ri position and si spin), where the
potential V contains both an electrostatic field φ(r) and a magnetic
field B(r), which couples to the spin (the coupling to the orbit can
be ignored for our purposes; see Supplementary Information), and
the problem is to find the ground state within the set of fermionic
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(that is, antisymmetric) quantum states. Following the early work
of ref. 3, it was shown1,2 that this problem could be rephrased
as a single-particle minimization problem, for the reason that the
only problem-dependent part is the external potential V , whose
expectation value only depends on the local density, whereas the
kinetic and interaction terms T and I are fixed and universal for all
systems. Thus, the ground-state energy is given by

E0=min
ρ
{tr(Vρ)+F [ρ]} (2)

where ρ is a single-electron density, and the functional F contains
the problem-independentminimization overT and I ,

F [ρ] =min
Ω→ρ

tr[(T+ I )Ω] (3)

Here, the minimization runs over all N-electron density operators
Ω that give rise to the reduced density ρ. The central requirement
for a good density functional theory (DFT) algorithm is to find
a suitable approximation to the universal functional, and indeed
better and better techniques have been developed, making DFT
the most widely used and most successful algorithm for treating
interacting electrons.

However, as we show in this letter, there exist fundamental limits
that constrain the ability to find a generally applicable and efficiently
computable approximation to the universal functional, and thus
put bounds on the applicability of DFT. To this end, we consider
the two-dimensional (2D) Hubbard model with local magnetic
fields, which arises from the problem of interacting electrons for
a specifically chosen lattice potential, and can thus be simulated
using DFT. We first determine the computational complexity of
solving the Hubbard model and show that it is among the hardest
problems in the complexity class QMA, Quantum Merlin Arthur.
QMAcontains problems that are believed to be hard to solve even by
quantum computers, but once a solution is found it can be checked
efficiently by a quantum computer. Thus, QMA encompasses the
complexity class NP. We compare this with the difficulty of solving
theHubbardmodel using DFTwith a suitable approximation of the
functional at hand, and find that in that case the Hubbard model
can be solved by a classical computer in a time polynomial in the
number of electrons. This means that the existence of an efficient
approximation to the functional would imply QMA= P, that is,
computing the functional to polynomial accuracy in the number
of electrons is a QMA-hard problem, which poses fundamental
limitations on the ability to approximate the functional in DFT. Of

732 NATURE PHYSICS | VOL 5 | OCTOBER 2009 | www.nature.com/naturephysics

© 2009 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys1370
mailto:norbert.schuch@gmail.com
mailto:fverstraete@gmail.com
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS1370 LETTERS

QMA

NP BQP

P

Figure 1 | The relevant complexity classes and their relationships. P and
BQP are the classes of problems efficiently solvable by classical and
quantum computers, respectively; NP (QMA) contains decision problems
that are likely to be hard to solve by classical (quantum) computers, but
where, for positive instances, classical (quantum) proofs exist that can be
checked efficiently by a classical (quantum) computer. All inclusions are
believed to be strict. We show that solving the Hubbard model is among
the hardest problems in QMA, whereas the existence of an efficient
description of the universal functional in DFT would put it in P, leading to
the collapse of all aforementioned complexity classes. This puts tight
bounds on the existence of such functionals.

course, this does not mean that DFT is not applicable in practice:
much lower (for example constant) accuracies will typically suffice,
and DFT is indeed a highly successful method.

The 2D Hubbard model4,5 describes a system of fermions hop-
ping on a lattice. Although it typically appears as a phenomenologi-
cal model for strongly bound electrons in solid-state physics6, it can
be derived rigorously from (1) for an appropriate potential, as we
show in the Supplementary Information. The Hubbard model with
local magnetic fields is given by the Hamiltonian

HHubb=−t
∑
〈i,j〉,s

a†
i,saj,s+U

∑
i

ni,↑ni,↓−
∑
i

σi ·Bi (4)

where a†
i,s creates an electron of spin s ∈ {↑,↓} on lattice site i,

〈i,j〉 denotes nearest neighbours on the 2D square lattice, n= a†a,
σi = (σ x,i,σ y,i,σ z,i) and σ α,i =

∑
s,s′ σ

α
ss′a

†
i,sai,s′ with σ α the Pauli

matrices. The first term describes an electron tunnelling at rate t
from one site to the adjacent one without changing its spin and the
second the on-site Coulomb repulsion U between two electrons
of different spin sitting on the same site, and the rightmost term
contains the contribution from the magnetic field, which imposes
a local field Bi at each site i—this is the only term that we can
tune locally.

The 2D Hubbard model is of high interest on its own,
as it is the minimal model that is believed to describe the
physics arising in high-temperature superconductivity, quantum
magnetism and heavy fermions. Indeed, it is one of the most
intensively studied models in solid-state physics, making the
investigation of its computational complexity interesting on its
own. In the following, we show that computing its ground-state
energy up to polynomial accuracy is complete for the complexity
class QMA, the quantum analogue of NP. (See Fig. 1 for the
relation of the relevant complexity classes.) A decision problem is
in QMA if—although possibly hard to solve even by a quantum
computer—every positive instance has a quantum proof that can
be checked efficiently by a quantum computer. In particular,
finding the ground-state energy of a local spin system with an
accuracy polynomial in the lattice size is in QMA: the ground state
serves as a proof, as expectation values of local Hamiltonians can
be estimated efficiently. Conversely, it has been shown that any
circuit verifying a QMA proof can be encoded as a ground-state
problem7,8; that is, ground-state problems are QMA-complete.
(A problem is called complete for a class if it is among the
hardest problems in this class, that is, if any problem in the

φ A ⊗ Bλ

A ⊗ B, A ≠ B

¬X ⊗ X

¬X ⊗ X ¬ Y ⊗ Y

X ⊗ X + Y ⊗ Y + Z ⊗ Z

φ
φ

Figure 2 | Gadgets to reduce Pauli couplings to Heisenberg couplings.
Each gadget works by inserting an extra spin in the middle, which is subject
to a strong local field, yielding the desired interaction in second-order
perturbation theory. A and B are Pauli matrices.

class can be reduced to it.) Using the same argument as before,
finding the ground-state energy of the Hubbard model is inside
QMA, because it can be mapped to a spin system through the
Jordan–Wigner transform: this enables us to specify its ground
state using spins, in such a way that it is possible to measure the
ground-state energy efficiently9.

In the following, we show that theHubbardmodel withmagnetic
fields is also a hard problem for QMA, and thus QMA-complete.
To this end, we start from a class of Hamiltonians for which
finding the ground-state energy is known to be QMA-complete—
that is, as hard as finding the ground-state energy of any local
Hamiltonian—and show that this problem can be reduced to
finding the ground-state energy of the Hubbard model with local
magnetic fields. This is accomplished by a sequence of reductions,
each of which reduces the previous Hamiltonian problem to a
more restricted class of Hamiltonians. Each step makes use of
perturbation-theory constructions (so-called gadgets), such that the
original Hamiltonian arises as the effective low-energy theory of the
new Hamiltonian13,14.

We start off with the Hamiltonian

HPauli=
∑
〈i,j〉

λijA(ij)⊗B(ij) (5)

defined on a 2D lattice with N spins, with A(ij) and B(ij) Pauli
matrices and |λ| ≤ 1, for which it has been proven that finding
the ground-state energy up to a polynomial accuracy 1/q(N ) is
QMA-hard10. Following ref. 10, we call interactions of the form
λijA(ij)⊗B(ij) Pauli interactions.

We first show how the Pauli Hamiltonian (5) can be reduced
to the 2D Heisenberg lattice with local fields (see Supplementary
Information for details). To this end, we use a chain of gadgets, all
of which replace a two-qubit coupling by a chain of three qubits
with a more restricted coupling. The idea is that by imposing
a strong local field on the central (‘mediator’) qubit the system
will essentially be in the ground state of the central qubit—but
there will be second-order processes in which an excitation hops
from the left qubit to the central one and then to the right, or
vice versa, yielding an effective coupling between the outer qubits.
(The excitation can also hop back and give an extra local term,
which can however easily be compensated by adjusting the local
magnetic field.) Note that similar gadgets have already been used,
for example, in refs 10, 15.

The full sequence of reductions to the Heisenberg lattice is
illustrated in Fig. 2. In a first step, we reduce arbitrary Pauli
couplings λA⊗B to Pauli couplings with constant λ and A 6=B. We
illustrate this with a λYl⊗Zr coupling (we use X for σ x and so on in
the following), which is obtained from three qubits with couplings
Yl⊗Xm⊗1r+1l⊗Ym⊗Zr by putting a strong field in the XY plane
on the central qubit: a short calculation shows that this indeed gives
a Yl⊗Zr coupling, where the strength is given by the angle in theXY
plane. The intuition behind this is that, for example, a Yl on the left
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Figure 3 | The sparse Heisenberg lattice as obtained from H2D, equation
(5), using a sequence of gadgets. It can be reduced to a 2D Heisenberg
lattice using the erasure gadget, where strong local fields are used to
decouple unwanted qubits to leading order, as shown in the inset.

qubit can excite the central qubit, and the excitation then hops to
the right qubit as a Zr. In order for this hopping to be possible, the
central fieldmust not be along theX or Y axis, and correspondingly
the hopping amplitude is controlled by the overlap of the field with
X and Y eigenvectors.

The second gadget reduces Pauli couplingsA⊗B (A 6=B) to Ising
couplings. This is achieved by essentially the same gadget as before:
forXl⊗Yr, takeXl⊗Xm⊗1r+1l⊗Ym⊗Yr and place a strong field in
X+Y direction on them qubit. In a next gadget, Ising couplings are
reduced to twoX⊗X+Y⊗Y couplings: placing a strong Y field on
the central qubits only allows for the hopping of excitations through
the X ⊗X part of the coupling. Similarly, the above coupling is
reduced to the Heisenberg interaction X ⊗X +Y ⊗Y +Z ⊗Z : a
strong Z field prohibits hopping through the Z⊗Z term, whereas
X ⊗ X + Y ⊗ Y describes hopping in the {|01〉, |10〉} subspace,
which to second order yields the very same hopping term between
the two outer qubits.

Putting these gadgets together, we have managed to reduce the
QMA-complete Hamiltonian (5) to the Heisenberg Hamiltonian
in a magnetic field on a sparse lattice. This can, in turn, be
reduced to the full 2D Heisenberg lattice by using an ‘erasure
gadget’, illustrated in Fig. 3: putting strong fields on the qubits to
be erased decouples them up to polynomial precision.We have thus
shown that the 2D Heisenberg Hamiltonian in a magnetic field on
a 2D square lattice,

HHeis= J
∑
〈i,j〉

σi ·σj−
∑
i

Bi ·σi (6)

is QMA-complete, both for J > 0 (which we use further on) and
J < 0. Note that the presence of a magnetic field is crucial for the
construction, as it is the only set of parameters available to encode
a computational problem.

The final step is to reduce the Heisenberg lattice to the Hubbard
model (4). The procedure can be found, for example, in ref. 6, and
has been included in the Supplementary Information: in (4), we
choose an on-site repulsion U very large as compared to t , and
operate the system in the so-called half-occupancy regime where
there are as many electrons as sites. (Note that this implies that
a polynomial scaling in the lattice size is equal to a polynomial
scaling in the number of electrons.) The tunnelling is suppressed
as t/U , so that in the ground state each site will be occupied by
exactly one electron, providing the desired spin degree of freedom.
The coupling between the spins is achieved by a second-order
process where one electron tunnels to an adjacent site, interacts

with the other electron, and tunnels back. However, this can only
take place if the spins form a singlet, giving rise to the effective
Hamiltonian (6) up to a constant. As the process is of second
order, we have that J = t 2/U > 0, and the error from higher-order
processes is O(N 3t 3/U 2); thus, U/t has to grow polynomially
with the system size N .

All these gadgets can be combined straightforwardly: first,
the gadgets in one layer do not interact, as they never share
a coupling term. It can thus be checked straightforwardly that,
for second-order perturbation theory, there will be no cross-talk
between the gadgets. Second, all gadget layers can be applied
one after another, as long as the total strength of the previous
gadgets is sufficiently smaller than the strong local fields of the
new gadgets. As the number of layers is constant, this can be
achieved by choosing polyscale field strengths, which allows for
a polynomial scaling of the interaction strength as well as an
arbitrary polynomial precision in energy. (See Supplementary
Information for details.)

Let us now turn our attention back to DFT and the problem
of interacting electrons. As we show in the Supplementary
Information, the Hubbard model (4) with arbitrary local fields
arises from (1) for an appropriately chosen V . For this particular
potential, we can explicitly write down the wavefunction wi(r)
of each mode ai to sufficient precision. Thus, the ground-state
wavefunction of the Hubbard model is supported by the wi(r), and
consequently the single-electron density for the ground state of the
Hubbard model must be of the form ρ(r)=

∑
λi,s,s′ |wi(r)|2|s〉〈s′|.

As the functional (3) is convex and the physical λi,s,s′ form a convex
set in R4N, the minimization in equation (2) (up to polynomial
accuracy) can be carried out efficiently16; that is, finding the
ground-state energy of the Hubbardmodel is in P. This implies that
PUF
=QMA with UF an oracle for the universal functional, that is,

computing the functional isQMA-hard under Turing reductions.
Let us note that there are alternative ways to define F [ρ], for

example as the minimum over all pure N-electron states11,12, in
which case F is not convex. Yet, efficient computability (or even
certifiability) of F would still imply that we could give a certificate
for the ground-state energy, that is, QMA would collapse to NP.
This is considered very unlikely, thus implying that any reasonably
defined F cannot be computed in NP.

Finally, DFT can also be based on a functional defined on
two-electron densities, which can be computed efficiently11,12. In
this case, theQMA-hardness of the problem arises from the fact that
characterizing the set of allowed two-electron reduced states, the
N -representability problem, is QMA-hard9; in fact, this provides
an alternative proof of its hardness.
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