Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Measurement-based quantum computation

Abstract

Quantum computation offers a promising new kind of information processing, where the non-classical features of quantum mechanics are harnessed and exploited. A number of models of quantum computation exist. These models have been shown to be formally equivalent, but their underlying elementary concepts and the requirements for their practical realization can differ significantly. A particularly exciting paradigm is that of measurement-based quantum computation, where the processing of quantum information takes place by rounds of simple measurements on qubits prepared in a highly entangled state. We review recent developments in measurement-based quantum computation with a view to both fundamental and practical issues, in particular the power of quantum computation, the protection against noise (fault tolerance) and steps towards experimental realization. Finally, we highlight a number of connections between this field and other branches of physics and mathematics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Practical implementations
Figure 2: Topological fault tolerance from 3D cluster states.

Similar content being viewed by others

References

  1. Deutsch, D. Quantum computational networks. Proc. R. Soc. A 425, 73–90 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    Article  ADS  Google Scholar 

  3. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Deutsch, D. Quantum-theory the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 97–117 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bernstein, E. & Vazirani, U. Proc. 25th Annual ACM Symp. on the Theory of Computing 11–20 (ACM, 1993).

    Google Scholar 

  6. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  7. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  8. Nielsen, M. A. Quantum computation by measurement and quantum memory. Phys. Lett. A 308, 96–100 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Leung, D. W. Quantum computation by measurements. Int. J. Quantum Inform. 2, 33–43 (2004).

    Article  MATH  Google Scholar 

  10. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  11. Raussendorf, R. & Briegel, H. J. Computational model underlying the one-way quantum computer. Quantum Inform. Comput. 2, 443–486 (2002).

    MathSciNet  MATH  Google Scholar 

  12. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation using cluster states. Phys. Rev. A 68, 022312 (2003).

    Article  ADS  Google Scholar 

  13. Aliferis, P. & Leung, D. W. Computation by measurements: A unifying picture. Phys. Rev. A 70, 062314 (2004).

    Article  ADS  Google Scholar 

  14. Perdrix, S. & Jorrand, P. Measurement-based quantum turing machines and their universality. Preprint at <http://arxiv.org/abs/quant-ph/0404146> (2004).

  15. Danos, V., Kashefi, E. & Panangaden, P. The measurement calculus. J. Association Comput. Machinery 54, 8 (2007).

  16. Childs, A. M., Leung, D. W. & Nielsen, M. A. Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 71, 032318 (2005).

    Article  ADS  Google Scholar 

  17. Browne, D. E., Kashefi, E., Mhalla, M. & Perdrix, S. Generalized flow and determinism in measurement-based quantum computation. New J. Phys. 9, 250 (2007).

    Article  ADS  Google Scholar 

  18. Verstraete, F. & Cirac, J. I. Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004).

    Article  ADS  Google Scholar 

  19. Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007).

    Article  ADS  Google Scholar 

  20. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    Article  ADS  Google Scholar 

  21. Hein, M. et al. in Quantum Computers, Algorithms and Chaos Vol. 162 Int. School of Physics Enrico Fermi (eds Casati, G et al.) 115–218 (IOS Press, 2006).

    Google Scholar 

  22. Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  Google Scholar 

  23. Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

    Article  ADS  MATH  Google Scholar 

  24. Briegel, H. J., Raussendorf, R. & Schenzle, A. in Laser Physics at the Limits (eds Figger, H. et al.) 236–261 (Springer, 2002).

    Google Scholar 

  25. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    Article  ADS  Google Scholar 

  26. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).

    Article  ADS  Google Scholar 

  27. Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  28. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  29. Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–455 (2007).

    Article  ADS  Google Scholar 

  30. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    Article  ADS  Google Scholar 

  31. Nelson, K. D., Li., X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    Article  ADS  Google Scholar 

  32. Miroshnychenko, Y. et al. An atom-sorting machine. Nature 442, 151 (2006).

    Article  ADS  Google Scholar 

  33. Cho, J. Addressing individual atoms in optical lattices with standing-wave driving fields. Phys. Rev. Lett. 99, 020502 (2007).

    Article  ADS  Google Scholar 

  34. Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with sub-wavelength resolution. Phys. Rev. Lett. 100, 093005 (2008).

    Article  ADS  Google Scholar 

  35. Yi, W., Daley, A. J., Pupillo, G. & Zoller, P. State-dependent addressable subwavelength lattices with cold atoms. New J. Phys. 10, 073015 (2008).

    Article  ADS  Google Scholar 

  36. Vaucher, B., Nunnenkamp, A. & Jaksch, D. Creation of robust entangled states and new resources for measurement-based quantum computation using optical superlattices. New J. Phys. 10, 023005 (2008).

    Article  ADS  Google Scholar 

  37. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  ADS  Google Scholar 

  38. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  39. Duan, L. M. & Raussendorf, R. Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  40. Gross, D., Kieling, K. & Eisert, J. Potential and limits to cluster state quantum computing using probabilistic gates. Phys. Rev. A 74, 042343 (2006).

    Article  ADS  Google Scholar 

  41. Kieling, K., Rudolph, T. & Eisert, J. Percolation renormalization and quantum computing with non-deterministic gates. Phys. Rev. Lett. 99, 130501 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  43. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  44. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005).

    Article  ADS  Google Scholar 

  45. Lu., C. Y. et al. Experimental entanglement of six photons in graph states. Nature Phys. 3, 91–95 (2007).

    Article  ADS  Google Scholar 

  46. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

  47. Vallone, G., Pomarico, E., De Martini, F., Mataloni, P. & Berardi, V. Realization and characterization of a 2-photon 4-qubit linear cluster state. Phys. Rev. Lett. 98, 180502 (2007).

    Article  ADS  Google Scholar 

  48. Chen, K. et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys. Rev. Lett. 99, 120503 (2007).

    Article  ADS  Google Scholar 

  49. Vallone, G., Pomarico, E., De Martini, F. & Mataloni, P. Active one-way quantum computation with 2-photon 4-qubit cluster states. Phys. Rev. Lett. 100, 160502 (2008).

    Article  ADS  Google Scholar 

  50. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  51. Laurat, J. et al. Towards experimental entanglement connection with atomic ensembles in the single excitation regime. New J. Phys. 9, 207 (2007).

    Article  ADS  Google Scholar 

  52. Lim, Y. L., Beige, A. & Kwek, L. C. Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005).

    Article  ADS  Google Scholar 

  53. Kieling, K., Gross, D. & Eisert, J. Cluster state preparation using gates operating at arbitrary success probabilities. New J. Phys. 9, 200 (2007).

    Article  ADS  Google Scholar 

  54. Benjamin, S. C., Browne, D. E., Fitzsimons, J. & Morton, J. J. L. Brokered graph-state quantum computation. New J. Phys. 8, 141 (2006).

    Article  ADS  Google Scholar 

  55. Tanamoto, T., Liu, Y. X., Fujita, S., Hu, X. & Nori, F. Producing cluster states in charge qubits and flux qubits. Phys. Rev. Lett. 97, 230501 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Borhani, M. & Loss, D. Cluster states from Heisenberg interaction. Phys. Rev. A 71, 034308 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Weinstein, Y. S., Hellberg, C. S. & Levy, J. Quantum-dot cluster-state computing with encoded qubits. Phys. Rev. A 72, 020304(R) (2005).

    Article  ADS  Google Scholar 

  58. Shor, P. W. Proc. 37th Annual Symp. Foundations of Computer Science 56–65 (IEEE Computer Society Press, 1996).

    Google Scholar 

  59. Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation: Error models and thresholds. Proc. R. Soc. A 454, 365–384 (1998).

    Article  ADS  MATH  Google Scholar 

  60. Aharonov, D. & Ben-Or, M. Proc. Twenty-Ninth Annual ACM Symp. on Theory of Computing 176–188 (El Paso, 1997).

    Google Scholar 

  61. Gottesman, D. Stabilizer Codes and Quantum Error Correction. Thesis, Caltech (1997).

  62. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Information Comput. 6, 97–165 (2006).

    MathSciNet  MATH  Google Scholar 

  63. Aharonov, D., Kitaev, A. & Preskill, J. Fault-tolerant quantum computation with long-range correlated noise. Phys. Rev. Lett. 96, 050504 (2006).

    Article  ADS  Google Scholar 

  64. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    Article  ADS  Google Scholar 

  65. Raussendorf, R. Measurement-Based Quantum Computation with Cluster States. Thesis, Ludwig-Maximilians-Univ. Munich (2003).

  66. Nielsen, M. A. & Dawson, C. M. Fault-tolerant quantum computation with cluster states. Phys. Rev. A 71, 042323 (2005).

    Article  ADS  Google Scholar 

  67. Aliferis, P. & Leung, D. W. Computation by measurements: A unifying picture. Phys. Rev. A 70, 062314 (2004).

    Article  ADS  Google Scholar 

  68. Mor, T. & Yoran, N. Methods for scalable optical quantum computation. Phys. Rev. Lett. 97, 090501 (2006).

    Article  ADS  Google Scholar 

  69. Dawson, C. M., Haselgrove, H. L. & Nielsen, M. A. Noise thresholds for optical quantum computers. Phys. Rev. Lett. 96, 020501 (2006).

    Article  ADS  Google Scholar 

  70. Dawson, C. M., Haselgrove, H. L. & Nielsen, M. A. Noise thresholds for optical cluster-state quantum computation. Phys. Rev. A 73, 052306 (2006).

    Article  ADS  Google Scholar 

  71. Varnava, M., Browne, D. E. & Rudolph, T. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006).

    Article  ADS  Google Scholar 

  72. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  73. Raussendorf, R., Harrington, J. & Goyal, K. A fault-tolerant one-way quantum computer. Ann. Phys. 321, 2242–2270 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  76. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    Article  ADS  Google Scholar 

  78. Svore, K. M., DiVincenzo, D. P. & Terhal, B. M. Noise threshold for a fault-tolerant two-dimensional lattice architecture. Quant. Inf. Comp. 7, 297–318 (2007).

    MathSciNet  MATH  Google Scholar 

  79. Van den Nest, M., Dür, W., Miyake, A. & Briegel, H. J. Fundamentals of universality in one-way quantum computation. New J. Phys. 9, 204 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  80. Van den Nest, M., Miyake, A., Dür, W. & Briegel, H. J. Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 (2006).

    Article  ADS  Google Scholar 

  81. Vidal, G. Entanglement monotones. J. Mod. Opt. 47, 355–376 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  82. Browne, D. E. et al. Phase transition of computational power in the resource states for one-way quantum computation. New J. Phys. 10, 023010 (2008).

    Article  ADS  Google Scholar 

  83. Bartlett, S. D. & Rudolph, T. Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation. Phys. Rev. A 74, 040302(R) (2006).

    Article  ADS  MathSciNet  Google Scholar 

  84. Tame, M. S., Paternostro, M. & Kim, M. S. One-way quantum computing in a decoherence-free subspace. New J. Phys. 9, 201 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  85. Gross, D., Eisert, J., Schuch, N. & Perez-Garcia, D. Measurement-based quantum computation beyond the one-way model. Phys. Rev. A 76, 052315 (2007).

    Article  ADS  Google Scholar 

  86. Fannes, M., Nachtergaele, B. & Werner, R. F. Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Verstraete, F., Wolf, M. M., Perez-Garcia, D. & Cirac, J. I. Criticality the area law and the computational power of projected entangled pair states. Phys. Rev. Lett. 96, 220601 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Markov, I. & Shi, Y. Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38, 963–981 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  89. Jozsa, R. On the simulation of quantum circuits. Preprint at <http://arxiv.org/abs/quant-ph/0603163> (2006).

  90. Yoran, N. & Short, A. J. Classical simulation of limited-width cluster-state quantum computation. Phys. Rev. Lett. 96, 170503 (2006).

    Article  ADS  Google Scholar 

  91. Shi, Y.-Y., Duan, L.-M. & Vidal, G. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 022320 (2006).

    Article  ADS  Google Scholar 

  92. Bravyi, S. & Raussendorf, R. Measurement-based quantum computation with the toric code states. Phys. Rev. A 76, 022304 (2007).

    Article  ADS  Google Scholar 

  93. Verstraete, F. & Cirac, J. I. Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006).

    Article  ADS  Google Scholar 

  94. Van den Nest, M., Dür, W., Vidal, G. & Briegel, H. J. Classical simulation versus universality in measurement-based quantum computation. Phys. Rev. A 75, 012337 (2007).

    Article  ADS  Google Scholar 

  95. Van den Nest, M., Dür, W. & Briegel, H. J. Completeness of the classical 2D Ising model and universal quantum computation. Phys. Rev. Lett. 100, 110501 (2008).

    Article  ADS  Google Scholar 

  96. Van den Nest, M., Dür, W. & Briegel, H. J. Classical spin models and the quantum-stabilizer formalism. Phys. Rev. Lett. 98, 117207 (2007).

    Article  ADS  Google Scholar 

  97. Wu, F. Y. The Potts model. Rev. Mod. Phys. 54, 235–268 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  98. Mezard, M., Parisi, G. & Virasoro, M. A. Spin Glass Theory and Beyond (Word Scientific, 1987).

    MATH  Google Scholar 

  99. Bombin, H. & Martin-Delgado, M. Statistical mechanical models and topological color codes. Phys. Rev. A 77, 042322 (2008).

    Article  ADS  Google Scholar 

  100. Lidar, D. A. On the quantum computational complexity of the Ising spin glass partition function and of knot invariants. New J. Phys. 6, 167 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  101. Somma, R. D., Batista, C. D. & Ortiz, G. A quantum approach to classical statistical mechanics. Preprint at <http://arxiv.org/abs/quant-ph/0609216> (2006).

  102. Aharonov, D., Arad, I., Eban, E. & Landau, Z. Polynomial quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane. Preprint at <http://arxiv.org/abs/quant-ph/0702008> (2007).

  103. Van den Nest, M. & Briegel, H. J. Measurement-based quantum computation and undecidable logic. Foundations Phys. 38, 448–457 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Nielsen, M. A. Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Jozsa, R. An introduction to measurement based quantum computation. Preprint at <http://arxiv.org/abs/quant-ph/0508124> (2005).

  106. Browne, D. E. & Briegel, H. J. in Lectures on Quantum Information (eds Bruss, D. & Leuchs, G.) 359–371 (Wiley–VCH, 2006).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank I. Bloch for helpful comments on the manuscript. The work was supported by the European Union (QICS,OLAQUI,SCALA), EPSRC’s QIPIRC programme, the NSERC and the Austrian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Briegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briegel, H., Browne, D., Dür, W. et al. Measurement-based quantum computation. Nature Phys 5, 19–26 (2009). https://doi.org/10.1038/nphys1157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing