Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Taming molecular beams

Abstract

The motion of neutral molecules in a beam can be manipulated with inhomogeneous electric and magnetic fields. Static fields can be used to deflect or focus molecules, whereas time-varying fields can be used to decelerate or accelerate beams of molecules to any desired velocity. We review the possibilities that this molecular-beam technology offers, ranging from ultrahigh-resolution spectroscopy using molecular fountains to novel crossed-beam scattering experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the set-up for a Stark-deceleration experiment.
Figure 2: Stark-decelerated and trapped hydroxyl radicals.
Figure 3: Scheme of the Zeeman and optical Stark decelerator.
Figure 4: High-resolution spectroscopy using Stark-decelerated beams.

Similar content being viewed by others

References

  1. Scoles, G. (ed.) Atomic and Molecular Beam Methods Vol. 1 & 2 (Oxford Univ. Press, New York, 1988 & 1992).

  2. Gerlach, W. & Stern, O. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. für Phys. 9, 349–352 (1922).

    Article  ADS  Google Scholar 

  3. Rabi, I. I., Millman, S., Kusch, P. & Zacharias, J. R. The molecular beam resonance method for measuring nuclear magnetic moments. Phys. Rev. 55, 526–535 (1939).

    Article  ADS  Google Scholar 

  4. Friedburg, H. & Paul, W. Optische Abbildung mit neutralen Atomen. Die Naturwissenschaften 38, 159–160 (1951).

    Article  ADS  Google Scholar 

  5. Bennewitz, H. G. & Paul, W. Eine Methode zur Bestimmung von Kernmomenten mit fokussiertem Atomstrahl. Z. Phys. 139, 489–497 (1954).

    Article  ADS  Google Scholar 

  6. Bennewitz, H. G., Paul, W. & Schlier, Ch. Fokussierung polarer Moleküle. Z. Phys. 141, 6–15 (1955).

    Article  ADS  Google Scholar 

  7. Gordon, J. P., Zeiger, H. J. & Townes, C. H. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3 . Phys. Rev. 95, 282–284 (1954).

    Article  ADS  Google Scholar 

  8. Gordon, J. P., Zeiger, H. J. & Townes, C. H. The maser—New type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99, 1264–1274 (1955).

    Article  ADS  Google Scholar 

  9. Stolte, S. Reactive scattering studies on oriented molecules. Ber. Bunsenges. Phys. Chem. 86, 413–421 (1982).

    Article  Google Scholar 

  10. Wolfgang, R. Chemical accelerators. Sci. Am. 219, 40–52 (1968).

    Article  Google Scholar 

  11. Golub, R. On Decelerating Molecules. PhD thesis, MIT (1967).

  12. Bromberg, E. E. A. Acceleration and Alternate-Gradient Focusing of Neutral Polar Diatomic Molecules. PhD thesis, Univ. Chicago (1972).

  13. Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

    Article  ADS  Google Scholar 

  14. Maddi, J. A., Dinneen, T. P. & Gould, H. Slowing and cooling molecules and neutral atoms by time-varying electric-field gradients. Phys. Rev. A 60, 3882–3891 (1999).

    Article  ADS  Google Scholar 

  15. Bethlem, H. L., Berden, G., van Roij, A. J. A., Crompvoets, F. M. H. & Meijer, G. Trapping neutral molecules in a traveling potential well. Phys. Rev. Lett. 84, 5744–5747 (2000).

    Article  ADS  Google Scholar 

  16. Bethlem, H. L., Crompvoets, F. M. H., Jongma, R. T., van de Meerakker, S. Y. T. & Meijer, G. Deceleration and trapping of ammonia using time-varying electric fields. Phys. Rev. A 65, 053416 (2002).

    Article  ADS  Google Scholar 

  17. van de Meerakker, S. Y. T., Vanhaecke, N., Bethlem, H. L. & Meijer, G. Higher-order resonances in a Stark decelerator. Phys. Rev. A 71, 053409 (2005).

    Article  ADS  Google Scholar 

  18. Gubbels, K., Meijer, G. & Friedrich, B. Analytic wave model of Stark deceleration dynamics. Phys. Rev. A 73, 063406 (2006).

    Article  ADS  Google Scholar 

  19. Bethlem, H. L. et al. Electrostatic trapping of ammonia molecules. Nature 406, 491–494 (2000).

    Article  ADS  Google Scholar 

  20. Bochinski, J. R., Hudson, E. R., Lewandowski, H. J., Meijer, G. & Ye, J. Phase space manipulation of cold free radical OH molecules. Phys. Rev. Lett. 91, 243001 (2003).

    Article  ADS  Google Scholar 

  21. van de Meerakker, S. Y. T., Smeets, P. H. M., Vanhaecke, N., Jongma, R. T. & Meijer, G. Deceleration and electrostatic trapping of OH radicals. Phys. Rev. Lett. 94, 023004 (2005).

    Article  ADS  Google Scholar 

  22. Hoekstra, S. et al. Optical pumping of trapped neutral molecules by blackbody radiation. Phys. Rev. Lett. 98, 133001 (2007).

    Article  ADS  Google Scholar 

  23. van de Meerakker, S. Y. T., Labazan, I., Hoekstra, S., Küpper, J. & Meijer, G. Production and deceleration of a pulsed beam of metastable NH (a1Δ) radicals. J. Phys. B 39, S1077–S1084 (2006).

    Article  ADS  Google Scholar 

  24. Hudson, E. R. et al. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals. Phys. Rev. A 73, 063404 (2006).

    Article  ADS  Google Scholar 

  25. Jung, S., Tiemann, E. & Lisdat, Ch. Cold atoms and molecules from fragmentation of decelerated SO2 . Phys. Rev. A 74, 040701(R) (2006).

    Article  ADS  Google Scholar 

  26. Auerbach, D., Bromberg, E. E. A. & Wharton, L. Alternate-gradient focusing of molecular beams. J. Chem. Phys. 45, 2160–2166 (1966).

    Article  ADS  Google Scholar 

  27. Bethlem, H. L. et al. Alternating gradient focusing and deceleration of polar molecules. J. Phys. B 39, R263–R291 (2006).

    Article  Google Scholar 

  28. Bethlem, H. L., van Roij, A. J. A., Jongma, R. T. & Meijer, G. Alternate gradient focusing and deceleration of a molecular beam. Phys. Rev. Lett. 88, 133003 (2002).

    Article  ADS  Google Scholar 

  29. Tarbutt, M. R. et al. Slowing heavy, ground-state molecules using an alternating gradient decelerator. Phys. Rev. Lett. 92, 173002 (2004).

    Article  ADS  Google Scholar 

  30. Wohlfart, K. et al. Alternating-gradient focusing and deceleration of large molecules. Phys. Rev. A 77, 031404(R) (2008).

    Article  ADS  Google Scholar 

  31. Gilijamse, J. J. et al. The radiative lifetime of metastable CO (a3Π,v=0). J. Chem. Phys. 127, 221102 (2007).

    Article  ADS  Google Scholar 

  32. Hoekstra, S. et al. Electrostatic trapping of metastable NH molecules. Phys. Rev. A 76, 063408 (2007).

    Article  ADS  Google Scholar 

  33. Wing, W. H. Electrostatic trapping of neutral atomic particles. Phys. Rev. Lett. 45, 631–634 (1980).

    Article  ADS  Google Scholar 

  34. van Veldhoven, J., Bethlem, H. L., Schnell, M. & Meijer, G. Versatile electrostatic trap. Phys. Rev. A 73, 063408 (2006).

    Article  ADS  Google Scholar 

  35. Sawyer, B. C. et al. Magnetoelectrostatic trapping of ground state OH molecules. Phys. Rev. Lett. 98, 253002 (2007).

    Article  ADS  Google Scholar 

  36. Vanhaecke, N., Meier, U., Andrist, M., Meier, B. H. & Merkt, F. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75, 031402(R) (2007).

    Article  ADS  Google Scholar 

  37. Hogan, S. D., Sprecher, D., Andrist, M., Vanhaecke, N. & Merkt, F. Zeeman deceleration of H and D. Phys. Rev. A 76, 023412 (2007).

    Article  ADS  Google Scholar 

  38. Hogan, S. D., Wiederkehr, A. W., Andrist, M., Schmutz, H. & Merkt, F. Slow beams of atomic hydrogen by multistage Zeeman deceleration. J. Phys. B 41, 081005 (2008).

    Article  ADS  Google Scholar 

  39. Narevicius, E. et al. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam. New J. Phys. 9, 358 (2007).

    Article  ADS  Google Scholar 

  40. Narevicius, E. et al. Stopping supersonic beams with a series of pulsed electromagnetic coils: an atomic coilgun. Phys. Rev. Lett. 100, 093003 (2008).

    Article  ADS  Google Scholar 

  41. Narevicius, E. et al. Stopping supersonic oxygen with a series of pulsed electromagnetic coils: A molecular coilgun. Phys. Rev. A 77, 051401(R) (2008).

    Article  ADS  Google Scholar 

  42. Yamakita, Y., Procter, S. R., Goodgame, A. L., Softley, T. P. & Merkt, F. Deflection and deceleration of hydrogen Rydberg molecules in inhomogeneous electric fields. J. Chem. Phys. 121, 1419–1431 (2004).

    Article  ADS  Google Scholar 

  43. Vliegen, E., Wörner, H. J., Softley, T. P. & Merkt, F. Nonhydrogenic effects in the deceleration of Rydberg atoms in inhomogeneous electric fields. Phys. Rev. Lett. 92, 033005 (2004).

    Article  ADS  Google Scholar 

  44. Vliegen, E., Hogan, S. D., Schmutz, H. & Merkt, F. Stark deceleration and trapping of hydrogen Rydberg atoms. Phys. Rev. A 76, 023405 (2007).

    Article  ADS  Google Scholar 

  45. Hogan, S. D. & Merkt, F. Demonstration of three-dimensional electrostatic trapping of state-selected Rydberg atoms. Phys. Rev. Lett. 100, 043001 (2008).

    Article  ADS  Google Scholar 

  46. Friedrich, B. & Herschbach, D. Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 74, 4623–4626 (1995).

    Article  ADS  Google Scholar 

  47. Zhao, B. S. et al. Molecular lens of the nonresonant dipole force. Phys. Rev. Lett. 85, 2705–2708 (2000).

    Article  ADS  Google Scholar 

  48. Stapelfeldt, H., Sakai, H., Constant, E. & Corkum, P. B. Deflection of neutral molecules using the nonresonant dipole force. Phys. Rev. Lett. 79, 2787–2790 (1997).

    Article  ADS  Google Scholar 

  49. Fulton, R., Bishop, A. I. & Barker, P. F. Optical Stark decelerator for molecules. Phys. Rev. Lett. 93, 243004 (2004).

    Article  ADS  Google Scholar 

  50. Barker, P. F. & Shneider, M. N. Slowing molecules by optical microlinear deceleration. Phys. Rev. A 66, 065402 (2002).

    Article  ADS  Google Scholar 

  51. Fulton, R., Bishop, A. I., Shneider, M. N. & Barker, P. F. Controlling the motion of cold molecules with deep periodic optical potentials. Nature Phys. 2, 465–468 (2006).

    Article  ADS  Google Scholar 

  52. Balakrishnan, N., Dalgarno, A. & Forrey, R. C. Vibrational relaxation of CO by collisions with 4He at ultracold temperatures. J. Chem. Phys. 113, 621–627 (2000).

    Article  ADS  Google Scholar 

  53. Hutson, J. M. & Soldan, P. Molecule formation in ultracold atomic gases. Int. Rev. Phys. Chem. 25, 497–526 (2006).

    Article  Google Scholar 

  54. Bodo, E. & Gianturco, F. A. Collisional quenching of molecular ro-vibrational energy by He buffer loading at ultralow energies. Int. Rev. Phys. Chem. 25, 313–351 (2006).

    Article  Google Scholar 

  55. Gilijamse, J. J., Hoekstra, S., van de Meerakker, S. Y. T., Groenenboom, G. C. & Meijer, G. Near-threshold inelastic collisions using molecular beams with a tunable velocity. Science 313, 1617–1620 (2006).

    Article  ADS  Google Scholar 

  56. Hudson, J. J., Sauer, B. E., Tarbutt, M. R. & Hinds, E. A. Measurement of the electron electric dipole moment using YbF molecules. Phys. Rev. Lett. 89, 023003 (2002).

    Article  ADS  Google Scholar 

  57. Kawall, D., Bay, F., Bickman, S., Jiang, Y. & DeMille, D. Precision Zeeman–Stark spectroscopy of the metastable a(1)[3Σ+] state of PbO. Phys. Rev. Lett. 92, 133007 (2004).

    Article  ADS  Google Scholar 

  58. Daussy, Ch. et al. Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy. Phys. Rev. Lett. 83, 1554–1557 (1999).

    Article  ADS  Google Scholar 

  59. Reinhold, E. et al. Indication of a cosmological variation of the proton–electron mass ratio based on laboratory measurement and reanalysis of H2 spectra. Phys. Rev. Lett. 96, 151101 (2006).

    Article  ADS  Google Scholar 

  60. Shelkovnikov, A., Butcher, R. J., Chardonnet, C. & Amy-Klein, A. Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008).

    Article  ADS  Google Scholar 

  61. van Veldhoven, J. et al. Decelerated molecular beams for high-resolution spectroscopy: The hyperfine structure of 15ND3 . Eur. Phys. J. D 31, 337–349 (2004).

    Article  ADS  Google Scholar 

  62. Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006).

    Article  ADS  Google Scholar 

  63. van de Meerakker, S. Y. T., Vanhaecke, N., van der Loo, M. P. J., Groenenboom, G. C. & Meijer, G. Direct measurement of the radiative lifetime of vibrationally excited OH radicals. Phys. Rev. Lett. 95, 013003 (2005).

    Article  ADS  Google Scholar 

  64. van der Loo, M. P. J. & Groenenboom, G. C. Theoretical transition probabilities for the OH Meinel system. J. Chem. Phys. 126, 114314 (2007).

    Article  ADS  Google Scholar 

  65. Santos, L., Shlyapnikov, G. V., Zoller, P. & Lewenstein, M. Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1794 (2000).

    Article  ADS  Google Scholar 

  66. Baranov, M., Dobrek, Ł., Góral, K., Santos, L. & Lewenstein, M. Ultracold dipolar gases—a challenge for experiments and theory. Phys. Scr. T102, 74–81 (2002).

    Article  ADS  Google Scholar 

  67. Krems, R. V. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24, 99–118 (2005).

    Article  Google Scholar 

  68. Lahaye, T. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672–675 (2007).

    Article  ADS  Google Scholar 

  69. Koch, T. et al. Stabilization of a purely dipolar quantum gas against collapse. Nature Phys. 4, 218–222 (2008).

    Article  ADS  Google Scholar 

  70. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  71. André, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Phys. 2, 636–642 (2006).

    Article  ADS  Google Scholar 

  72. Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

    Article  ADS  Google Scholar 

  73. Domokos, P. & Ritsch, H. Mechanical effects of light in optical resonators. J. Opt. Soc. Am. B 20, 1098–1130 (2003).

    Article  ADS  Google Scholar 

  74. Morigi, G., Pinkse, P. W. H., Kowalewski, M. & de Vivie-Riedle, R. Cavity cooling of internal molecular motion. Phys. Rev. Lett. 99, 073001 (2007).

    Article  ADS  Google Scholar 

  75. Lev, B. L. et al. Prospects for the cavity-assisted laser cooling of molecules. Phys. Rev. A 77, 023402 (2008).

    Article  ADS  Google Scholar 

  76. van Veldhoven, J., Bethlem, H. L. & Meijer, G. AC electric trap for ground-state molecules. Phys. Rev. Lett. 94, 083001 (2005).

    Article  ADS  Google Scholar 

  77. Bethlem, H. L., van Veldhoven, J., Schnell, M. & Meijer, G. Trapping polar molecules in an ac trap. Phys. Rev. A 74, 063403 (2006).

    Article  ADS  Google Scholar 

  78. van de Meerakker, S. Y. T., Vanhaecke, N. & Meijer, G. Stark deceleration and trapping of OH radicals. Annu. Rev. Phys. Chem. 57, 159–190 (2006).

    Article  ADS  Google Scholar 

  79. Rangwala, S. A., Junglen, T., Rieger, T., Pinkse, P. W. H. & Rempe, G. Continuous source of translationally cold dipolar molecules. Phys. Rev. A 67, 043406 (2003).

    Article  ADS  Google Scholar 

  80. Rieger, T., Junglen, T., Rangwala, S. A., Pinkse, P. W. H. & Rempe, G. Continuous loading of an electrostatic trap for polar molecules. Phys. Rev. Lett. 95, 173002 (2005).

    Article  ADS  Google Scholar 

  81. Junglen, T., Rieger, T., Rangwala, S. A., Pinkse, P. W. H. & Rempe, G. Two-dimensional trapping of dipolar molecules in time-varying electric fields. Phys. Rev. Lett. 92, 223001 (2004).

    Article  ADS  Google Scholar 

  82. Tsuji, H., Okuda, Y., Sekiguchi, T. & Kanamori, H. Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter. Chem. Phys. Lett. 436, 331–334 (2007).

    Article  ADS  Google Scholar 

  83. Deachapunya, S. et al. Slow beams of massive molecules. Eur. Phys. J. D 46, 307–313 (2008).

    Article  ADS  Google Scholar 

  84. Willitsch, S., Bell, M. T., Gingell, A. D., Procter, S. R. & Softley, T. P. Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules. Phys. Rev. Lett. 100, 043203 (2008).

    Article  ADS  Google Scholar 

  85. Patterson, D. & Doyle, J. M. Bright, guided molecular beam with hydrodynamic enhancement. J. Chem. Phys. 126, 154307 (2007).

    Article  ADS  Google Scholar 

  86. Maxwell, S. E. et al. High-flux beam source for cold, slow atoms or molecules. Phys. Rev. Lett. 95, 173201 (2005).

    Article  ADS  Google Scholar 

  87. Levy, D. H. The spectroscopy of very cold gases. Science 214, 263–269 (1981).

    Article  ADS  Google Scholar 

  88. Christen, W. & Rademann, K. Cooling and slowing in high-pressure jet expansions. Phys. Rev. A 77, 012702 (2008).

    Article  ADS  Google Scholar 

  89. Elioff, M. S., Valentini, J. J. & Chandler, D. W. Subkelvin cooling NO molecules via ‘billiard-like’ collisions with argon. Science 302, 1940–1943 (2003).

    Article  ADS  Google Scholar 

  90. Liu, N.-N. & Loesch, H. Kinematic slowing of molecules formed by reactive collisions. Phys. Rev. Lett. 98, 103002 (2007).

    Article  ADS  Google Scholar 

  91. Campbell, W. C., Tsikata, E., Lu, H.-I., van Buuren, L. D. & Doyle, J. M. Magnetic trapping and Zeeman relaxation of NH X3Σ. Phys. Rev. Lett. 98, 213001 (2007).

    Article  ADS  Google Scholar 

  92. Moon, P. B., Rettner, C. T. & Simons, J. P. Rotor accelerated molecular beams. J. Chem. Soc. Faraday Trans. II 74, 630–643 (1978).

    Article  Google Scholar 

  93. Gupta, M. & Herschbach, D. A mechanical means to produce intense beams of slow molecules. J. Phys. Chem. A 103, 10670–10673 (1999).

    Article  Google Scholar 

  94. Gupta, M. & Herschbach, D. Slowing and speeding molecular beams by means of a rapidly rotating source. J. Phys. Chem. A 105, 1626–1637 (2001).

    Article  Google Scholar 

  95. Narevicius, E. et al. Coherent slowing of a supersonic beam with an atomic paddle. Phys. Rev. Lett. 98, 103201 (2007).

    Article  ADS  Google Scholar 

  96. van de Meerakker, S. Y. T., Vanhaecke, N., Bethlem, H. L. & Meijer, G. Transverse stability in a Stark decelerator. Phys. Rev. A 73, 023401 (2006).

    Article  ADS  Google Scholar 

  97. Meek, S. A., Bethlem, H. L., Conrad, H. & Meijer, G. Trapping molecules on a chip in traveling potential wells. Phys. Rev. Lett. 100, 153003 (2008).

    Article  ADS  Google Scholar 

  98. Crompvoets, F. M. H., Jongma, R. T., Bethlem, H. L., van Roij, A. J. A. & Meijer, G. Longitudinal focusing and cooling of a molecular beam. Phys. Rev. Lett. 89, 093004 (2002).

    Article  ADS  Google Scholar 

  99. Crompvoets, F. M. H., Bethlem, H. L., Jongma, R. T. & Meijer, G. A prototype storage ring for neutral molecules. Nature 411, 174–176 (2001).

    Article  ADS  Google Scholar 

  100. Crompvoets, F. M. H., Bethlem, H. L., Küpper, J., van Roij, A. J. A. & Meijer, G. Dynamics of neutral molecules stored in a ring. Phys. Rev. A 69, 063406 (2004).

    Article  ADS  Google Scholar 

  101. Heiner, C. E., Carty, D., Meijer, G. & Bethlem, H. L. A molecular synchrotron. Nature Phys. 3, 115–118 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The experiments described in this review that have been carried out in our laboratory are the result of almost ten years of research by a large group of people. We are greatly indebted to the students, postdocs, senior scientists and research technicians that have been involved in this work, and without whom these experiments would not have been possible. The measurements shown in Fig. 2a were carried out with the help of S. Hoekstra, J. J. Gilijamse and J. Küpper. H.L.B. acknowledges financial support from the Netherlands Organization for Scientific Research (NWO) through a VENI-grant. The fruitful collaboration and the open exchange of ideas with the other laboratories working in this area are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Meijer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Meerakker, S., Bethlem, H. & Meijer, G. Taming molecular beams. Nature Phys 4, 595–602 (2008). https://doi.org/10.1038/nphys1031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing