Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray-scattering information obtained from near-field speckle

Abstract

Whenever coherent radiation impinges on a scattering object, a speckled intensity pattern is produced. In the far field the speckle size and shape do not mirror any properties of the object. Here we show that, in spite of the limited spatial coherence of synchrotron radiation, speckles with remarkable properties can be observed when the sensor is placed in the near field. The statistical analysis of these speckles generates static and dynamic X-ray-scattering data, and the results from two typical scattering samples are given. When compared with conventional far-field techniques, the method enables a substantial increase of around four orders of magnitude in the beam size and power and opens the way to a previously inaccessible region of scattering angles. It also offers the possibility of tracking the spatio-temporal evolution of complex fluids and other inhomogeneous systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stray-noise removal.
Figure 2: Speckle images obtained at various distances from the membrane.
Figure 3: Sequence of azimuthally averaged power spectra of speckle intensity distribution obtained by Fourier analysis of the images in Fig. 2.
Figure 4: Pictorial description of the self-referencing interference scheme.
Figure 5: Absolute scattering intensity I(q) for a microporous membrane with nominal pore size 0.45 μm.
Figure 6: q-dependent relaxation time τ for silica colloidal particles diffusing in water.

Similar content being viewed by others

References

  1. Goodman, J. W. Speckle Phenomena in Optics 1st edn (Roberts and Company Publishers, Greenwood Village, 2006).

    Google Scholar 

  2. Sutton, M. et al. Observation of speckle by diffraction with coherent X-rays. Nature 352, 608–610 (1991).

    Article  ADS  Google Scholar 

  3. Mochrie, S. G. et al. Dynamics of block copolymer micelles revealed by X-ray intensity fluctuation spectroscopy. Phys. Rev. Lett. 78, 1275–1278 (1997).

    Article  ADS  Google Scholar 

  4. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  5. Marchesini, S. et al. Coherent X-ray diffractive imaging: Applications and limitations. Opt. Express 11, 2344–2353 (2003).

    Article  ADS  Google Scholar 

  6. Giglio, M., Carpineti, M. & Vailati, A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r). Phys. Rev. Lett. 85, 1416–1419 (2000).

    Article  ADS  Google Scholar 

  7. Brogioli, D., Vailati, A. & Giglio, M. Heterodyne near-field scattering. Appl. Phys. Lett. 81, 4109–4111 (2002).

    Article  ADS  Google Scholar 

  8. Ferri, F., Magatti, D., Pescini, D., Potenza, M. A. C. & Giglio, M. Heterodyne near-field scattering: A technique for complex fluids. Phys. Rev. E 70, 041405 (2004).

    Article  ADS  Google Scholar 

  9. Cerbino, R. Correlations of light in the deep Fresnel region: An extended Van Cittert and Zernike theorem. Phys. Rev. A 75, 053815 (2007).

    Article  ADS  Google Scholar 

  10. Giglio, M., Brogioli, D., Potenza, M. A. C. & Vailati, A. Near field scattering. Phys. Chem. Chem. Phys. 6, 1547–1550 (2004).

    Article  Google Scholar 

  11. Narayanan, T., Diat, O. & Bösecke, P. SAXS and USAXS on the high brilliance beamline at the ESRF. Nucl. Instrum. Methods Phys. Res. A 177, 1005–1009 (2001).

    Article  ADS  Google Scholar 

  12. Cipelletti, L., Carpineti, M. & Giglio, M. Fractal morphology, spatial order, and pore structure in microporous membrane filters. Langmuir 12, 6446–6451 (1996).

    Article  Google Scholar 

  13. Guigay, J. P. et al. The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays. J. Synchr. Rad. 11, 476–482 (2004).

    Article  Google Scholar 

  14. Zabler, S., Cloetens, P., Guigay, J.-P., Baruchel, J. & Schlenker, M. Optimization of phase contrast imaging using hard x rays. Rev. Sci. Instrum. 76, 073705 (2005).

    Article  ADS  Google Scholar 

  15. Trainoff, S. P. & Cannell, D. S. Physical optics treatment of the shadowgraph. Phys. Fluids 14, 1340–1363 (2002).

    Article  ADS  Google Scholar 

  16. Talbot, H. F. Facts relating to optical science. No. IV. Phil. Mag. 9, 401–407 (1836).

    Google Scholar 

  17. Rehberg, I. et al. Thermally induced hydrodynamic fluctuations below the onset of electroconvection. Phys. Rev. Lett. 67, 596–599 (1994).

    Article  ADS  Google Scholar 

  18. Croccolo, F., Brogioli, D., Vailati, A., Giglio, M. & Cannell, D. S. Effect of gravity on the dynamics of nonequilibrium fluctuations in a free-diffusion experiment. Ann. NY Acad. Sci. 1077, 365–379 (2006).

    Article  ADS  Google Scholar 

  19. Batchelor, G. K. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74, 1–29 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  20. Cipelletti, L. & Ramos, L. Slow dynamics in glassy soft matter. J. Phys. Condens. Matter 17, R253 (2005).

    Article  ADS  Google Scholar 

  21. Cosentino, M. Near Field Scattering, Laurea Degree Dissertation, Univ. Milan (June 2002).

  22. Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).

    Article  ADS  Google Scholar 

  23. Mokso, R. & Cloetens, P. Nanoscale zoom tomography with hard x rays using Kirkpatrick–Baez optics. Appl. Phys. Lett. 90, 144104 (2007).

    Article  ADS  Google Scholar 

  24. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    Article  ADS  Google Scholar 

  25. Kim, G. B. & Lee, S. J. X-ray PIV measurements of blood flows without tracer particles. Exp. Fluids 41, 195–200 (2006).

    Article  Google Scholar 

  26. Ziegler, E. et al. The ESRF BM05 metrology beamline: Instrumentation and performance upgrade. AIP Conf. Proc. 705, 436–439 (2004).

    Article  ADS  Google Scholar 

  27. Kohn, V., Snigireva, I. & Snigirev, A. Direct measurement of transverse coherence length of hard X rays from interference fringes. Phys. Rev. Lett. 85, 2745–2748 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the ESRF for provision of synchrotron radiation facilities. We thank D. Cannell, P. Cloetens, G. Grübel, J. Harden, S. Mochrie, T. Narayanan, A. Snigirev, I. Snigireva, T. Weitkamp, D. Weitz and E. Ziegler for scientific discussion and encouragement. L. Claustre and J. Y. Massonnat are thanked for technical assistance at the beamline. Thanks are also due to M. Alaimo for bringing to our attention the results of ref. 25 and to C. Vozzi for help with the preparation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

R.C., L.P., M.A.C.P. and M.G. made the speckle-based scattering measurements at the beamline BM05 (ESRF, Grenoble) and are responsible for the data analysis and for the writing of the manuscript. P.B. made the Bonse–Hart scattering measurement (microporous membrane) at the beamline ID02 (ESRF, Grenoble). A.R. made the traditional XPCS measurements (silica particles) at the beamline ID10A (ESRF, Grenoble).

Corresponding authors

Correspondence to R. Cerbino or M. Giglio.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Fig 1, Fig 2 and Fig 3 (PDF 1281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerbino, R., Peverini, L., Potenza, M. et al. X-ray-scattering information obtained from near-field speckle. Nature Phys 4, 238–243 (2008). https://doi.org/10.1038/nphys837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing