Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution scanning electron microscopy of an ultracold quantum gas

Abstract

Our knowledge of ultracold quantum gases is strongly influenced by our ability to probe these objects. In situ imaging combined with single-atom sensitivity is an especially appealing scenario, as it can provide direct information on the structure and the correlations of such systems. For a precise characterization a high spatial resolution is mandatory. In particular, the perspective to study quantum gases in optical lattices makes a resolution well below one micrometre highly desirable. Here, we report on a novel microscopy technique, which is based on scanning electron microscopy and allows for the detection of single atoms inside a quantum gas with a spatial resolution of better than 150 nm. We document the great functionality of this technique by precise density measurements of a trapped Bose–Einstein condensate and the first experimental demonstration of single-site addressability in a submicrometre optical lattice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working principle.
Figure 2: Electron microscope images of a trapped Bose–Einstein condensate.
Figure 3: Analysis of the Bose–Einstein condensate.
Figure 4: Images of a Bose–Einstein condensate loaded in a one-dimensional optical lattice.
Figure 5: Ground state of a Bose–Einstein condensate in a one-dimensional optical lattice.
Figure 6: Single-site addressability.

Similar content being viewed by others

References

  1. Ketterle, W., Durfee, D. & Stamper-Kurn, D. Bose–Einstein Condensation in Atomic Gases, Proc. Int. School of Physics Enrico Fermi (IOS Press, 1999).

    Google Scholar 

  2. Andrews, M. et al. Direct, non-destructive imaging of a Bose condensate. Science 273, 84–87 (1996).

    Article  ADS  Google Scholar 

  3. Shin, Y., Zwierlein, M., Schunck, C., Schirotzek, A. & Ketterle, W. Observation of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett. 97, 030401 (2006).

    Article  ADS  Google Scholar 

  4. Hu, Z. & Kimble, H. Observation of a single atom in a magneto-optical trap. Opt. Lett. 19, 1888–1890 (1994).

    Article  ADS  Google Scholar 

  5. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  ADS  Google Scholar 

  6. Kuhr, S. et al. Deterministic delivery of a single atom. Science 293, 278–280 (2001).

    Article  ADS  Google Scholar 

  7. Schrader, D. et al. Neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004).

    Article  ADS  Google Scholar 

  8. Teper, I., Lin, Y. & Vuletic, V. Resonator-aided single-atom detection on a microfabricated chip. Phys. Rev. Lett. 97, 023002 (2006).

    Article  ADS  Google Scholar 

  9. Nelson, K., Li, X. & Weiss, D. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    Article  ADS  Google Scholar 

  10. Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005).

    Article  ADS  Google Scholar 

  11. Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effecct for bosons and fermions. Nature 445, 402–405 (2007).

    Article  ADS  Google Scholar 

  12. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    Article  ADS  Google Scholar 

  13. Gericke, T., Würtz, P., Reitz, D., Utfeld, C. & Ott, H. All-optical formation of a Bose–Einstein condensate for applications in scanning electron microscopy. Appl. Phys. B 89, 447–451 (2007).

    Article  ADS  Google Scholar 

  14. Bartlett, P. L. & Stelbovics, A. T. Electron-impact ionization cross sections for elements z=1 to 54. At. Data Nuc. Data Tab. 86, 235–265 (2004).

    Article  ADS  Google Scholar 

  15. Schappe, R., Feng, P., Anderson, L., Lin, C. & Walker, T. Electron collision cross-sections measured with the use of a magneto-optical trap. Europhys. Lett. 29, 439–444 (1995).

    Article  ADS  Google Scholar 

  16. Schappe, R., Walker, T., Anderson, L. W. & Lin, C. C. Absolute electron-impact ionization cross section measurements using a magneto-optical trap. Phys. Rev. Lett. 76, 4328–4331 (1996).

    Article  ADS  Google Scholar 

  17. Minguzzi, A., Conti, S. & Tosi, M. P. The internal energy and condensate fraction of a trapped interacting Bose gas. J. Phys. Condens. Matter 9, L33–L38 (1997).

    Article  ADS  Google Scholar 

  18. Naraschewski, M. & Stamper-Kurn, D. M. Analytical description of a trapped semi-ideal Bose gas at finite temperature. Phys. Rev. A 58, 2423–2426 (1998).

    Article  ADS  Google Scholar 

  19. Gerbier, F. et al. Experimental study of the thermodynamics of an interacting trapped Bose–Einstein condensed gas. Phys. Rev. A 70, 013607 (2004).

    Article  ADS  Google Scholar 

  20. Berg, B. A. & Harris, R. C. From data to probability densities without histograms. Comput. Phys. Commun. 179, 443–448 (2008).

    Article  ADS  Google Scholar 

  21. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  22. Mandel, O. et al. Controlled collisions for multiparticle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    Article  ADS  Google Scholar 

  23. Morsch, O. & Oberthaler, M. Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006).

    Article  ADS  Google Scholar 

  24. Bloch, I. Quantum Gases. Science 319, 1202–1203 (2008).

    Article  ADS  Google Scholar 

  25. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  26. Scheunemann, R., Cataliotti, F. S., Hänsch, T. W. & Weitz, M. Resolving and addressing atoms in individual sites of a CO2-laser optical lattice. Phys. Rev. A 62, 051801 (2000).

    Article  ADS  Google Scholar 

  27. Naraschewski, M. & Glauber, R. J. Spatial coherence and density correlations of trapped Bose gases. Phys. Rev. A 59, 4595–4607 (1999).

    Article  ADS  Google Scholar 

  28. Kheruntsyan, K., Gangardt, D., Drummond, P. & Shlyapnikov, G. V. Finite-temperature correlations and density profiles of an inhomogeneous interacting one-dimensional Bose gas. Phys. Rev. A 71, 053615 (2005).

    Article  ADS  Google Scholar 

  29. Sykes, A. G. et al. Spatial nonlocal pair correlations in a repulsive 1d Bose gas. Phys. Rev. Lett. 100, 160406 (2008).

    Article  ADS  Google Scholar 

  30. Estève, J. et al. Observations of density fluctuations in an elongated Bose gas: Ideal gas and quasicondensate regimes. Phys. Rev. Lett. 96, 130403 (2006).

    Article  ADS  Google Scholar 

  31. Greiner, M., Regal, C. A., Stewart, J. T. & Jin, D. S. Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phy. Rev. Lett. 94, 110401 (2005).

    Article  ADS  Google Scholar 

  32. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    Article  ADS  Google Scholar 

  33. Van Kempen, E. G. M., Kokkelmans, S. J. J. M. F., Heinzen, D. J. & Verhaar, B. J. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 093201 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Widera, T. Best and D. van Oosten for discussions and C. Utfeld for contributions in the early stage of the experiment. We thank P. van der Straten for the loan of equipment. This work was funded through the DFG and the Forschungsfond of the University of Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herwig Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gericke, T., Würtz, P., Reitz, D. et al. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys 4, 949–953 (2008). https://doi.org/10.1038/nphys1102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing