Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals

Abstract

Photons propagate in photonic crystals in the same way as electrons propagate in solids. The periodical refractive index induces forbidden frequency bands, which nurture a variety of novel integrated devices and several fundamental studies ranging from threshold-less lasers to quantum computing. However, these investigations have to face the unavoidable disorder of real-world structures: if on one hand it largely hampers experiments, on the other hand it opens the possibility to study three-dimensional (3D) photon strong localization. We report on 3D+1 Maxwell–Bloch simulations of light dynamics in inverted opals exhibiting a complete photonic bandgap. We show that the disorder-induced localized states strongly alter the photonic crystal’s response to femtosecond optical pulses, drastically reducing the diffusion constant and trapping light. We find that an optimal amount of randomness favours the strongest localization; correspondingly, self-starting laser processes are mediated by Anderson states that prevail over spatially extended Bloch modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photonic bandgap fragility.
Figure 2: Transmission tail and localization.
Figure 3: Diffusion and decay-time distribution.
Figure 4: Laser emission spectrum.
Figure 5: Bloch versus Anderson laser.

Similar content being viewed by others

References

  1. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  3. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic Crystals (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  4. Sakoda, K. Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

    Book  Google Scholar 

  5. Soukoulis, C. M. (ed.) Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dordrecth, 2001).

  6. Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    Article  ADS  Google Scholar 

  7. López, C. Three-dimensional photonic bandgap materials: Semiconductors for light. J. Opt. A 8, R1–R14 (2006).

    Article  ADS  Google Scholar 

  8. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  ADS  Google Scholar 

  9. Painter, O. et al. Two-dimensional photonic band-gap defect mode. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  10. Li, Z.-Y. & Zhang, Z.-Q. Fragility of photonic band gaps in inverse-opal photonic crystals. Phys. Rev. B 62, 1516–1519 (2000).

    Article  ADS  Google Scholar 

  11. Wang, Z. L. et al. Optical properties of inverted opal photonic band gap crystals with stacking disorder. Phys. Rev. E 67, 016612 (2003).

    Article  ADS  Google Scholar 

  12. Yannopapas, V., Modinos, A. & Stefanou, N. Anderson localization of light in inverted opals. Phys. Rev. B 68, 193205 (2003).

    Article  ADS  Google Scholar 

  13. Lavrinenko, A. et al. 9th Int. Conf. on Transparent Optical Networks, 2007. ICTON ’07 2, 208–211 (2007).

    Book  Google Scholar 

  14. Watson, G. H., Fleury, P. A. & McCall, S. L. Searching for photon localization in the time domain. Phys. Rev. Lett. 58, 945–948 (1987).

    Article  ADS  Google Scholar 

  15. Storzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    Article  ADS  Google Scholar 

  16. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  17. Scheffold, F., Lenke, R., Tweer, R. & Maret, G. Localization or classical diffusion of light. Nature 398, 206–207 (1999).

    Article  ADS  Google Scholar 

  18. Schuurmans, F. J. P., Megens, M., Vanmaekelbergh, D. & Lagendijk, A. Light scattering near the localization transition in macroporous gap networks. Phys. Rev. Lett. 83, 2183–2186 (1999).

    Article  ADS  Google Scholar 

  19. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Article  ADS  Google Scholar 

  20. Lubatsch, A., Kroha, J. & Busch, K. Theory of light diffusion in disordered media with linear absorption or gain. Phys. Rev. B 71, 184201 (2005).

    Article  ADS  Google Scholar 

  21. Frank, R., Lubatsch, A. & Kroha, J. Theory of strong localization effects of light in disordered loss or gain media. Phys. Rev. B 73, 245107 (2006).

    Article  ADS  Google Scholar 

  22. Huang, J. et al. Anomalous coherent backscattering of light from opal photonic crystals. Phys. Rev. Lett. 86, 4815–4818 (2001).

    Article  ADS  Google Scholar 

  23. Koenderink, A. F. & Vos, W. L. Optical properties of real photonic crystals: Anomalous diffuse transmission. J. Opt. Soc. Am. B 22, 1075–1083 (2005).

    Article  ADS  Google Scholar 

  24. Sigalas, M. M., Soukoulis, C. M., Chan, C. T., Biswas, R. & Ho, K. M. Effect of disorder on photonic band gaps. Phys. Rev. B 59, 12767–12770 (1999).

    Article  ADS  Google Scholar 

  25. Chabanov, A. A., Zhang, Z. Q. & Genack, A. Z. Breakdown of diffusion in dynamics of extended waves in mesoscopic media. Phys. Rev. Lett. 90, 203903 (2003).

    Article  ADS  Google Scholar 

  26. Reil, F. & Thomas, J. E. Observation of phase conjugation of light arising from enhanced backscattering in a random medium. Phys. Rev. Lett. 95, 143903 (2005).

    Article  ADS  Google Scholar 

  27. Skipetrov, S. E. & van Tiggelen, B. A. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett. 96, 043902 (2006).

    Article  ADS  Google Scholar 

  28. Vellekoop, I. M., Lodahl, P. & Lagendijk, A. Determination of the diffusion constant using phase-sensitive measurements. Phys. Rev. E 71, 056604 (2005).

    Article  ADS  Google Scholar 

  29. Conti, C., Angelani, L. & Ruocco, G. Light diffusion and localization in three-dimensional nonlinear disordered media. Phys. Rev. A 75, 033812 (2007).

    Article  ADS  Google Scholar 

  30. Cao, H. Review on the latest developments in random lasers with coherent feedback. J. Phys. A 38, 10497–10535 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  31. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  32. Teh, L. K., Wong, C. C., Yang, H. Y., Lau, S. P. & Yu, S. F. Lasing in electrodeposited ZnO inverse opal. Appl. Phys. Lett. 91, 161116 (2007).

    Article  ADS  Google Scholar 

  33. Scharrer, M., Yamilov, A., Wu, X., Cao, H. & Chang, R. P. H. Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals. Appl. Phys. Lett. 88, 201103 (2006).

    Article  ADS  Google Scholar 

  34. Sheng, P. (ed.) Scattering and Localization of Classical Waves in Random Media (World Scientific, Singapore, 1990).

  35. Taflove, A. & Hagness, S. C. Computational Electrodynamics: the Finite-difference Time-domain Method 3rd edn (Artech House Publishers, Boston, 2000).

    MATH  Google Scholar 

  36. Fratalocchi, A., Conti, C. & Ruocco, G. Mode competitions and dynamical frequency pulling in Mie nanolasers: 3D ab-initio Maxwell-Bloch computations. Opt. Express 16, 8342–8349 (2008).

    Article  ADS  Google Scholar 

  37. Jiang, X. & Soukoulis, C. M. Time dependent theory for random lasers. Phys. Rev. Lett. 85, 70–73 (2000).

    Article  ADS  Google Scholar 

  38. Vanneste, C. & Sebbah, P. Localized modes in random arrays of cylinders. Phys. Rev. E 71, 026612 (2005).

    Article  ADS  Google Scholar 

  39. Slavcheva, G., Arnold, J. & Ziolkowski, R. FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities. IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004).

    Article  ADS  Google Scholar 

  40. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    Article  ADS  Google Scholar 

  41. Busch, K. & John, S. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896–3908 (1998).

    Article  ADS  Google Scholar 

  42. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    Article  ADS  Google Scholar 

  43. Sözüer, H. S., Haus, J. W. & Inguva, R. Photonic bands: Convergence problems with the plane-wave method. Phys. Rev. B 45, 13962–13972 (1992).

    Article  ADS  Google Scholar 

  44. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  ADS  Google Scholar 

  45. Galisteo-López, J. F., Galli, M., Balestreri, A., Andreani, L. C. & López, C. Optical response of artificial opals oriented along the gamma x direction. Appl. Phys. Lett. 90, 231112 (2007).

    Article  ADS  Google Scholar 

  46. Vlasov, Y. A. et al. Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals. Phys. Rev. E 61, 5784–5793 (2000).

    Article  ADS  Google Scholar 

  47. Allard, M. & Sargent, E. H. Impact of polydispersivity on light propagation in colloidal photonic crystals. Appl. Phys. Lett. 85, 5887–5889 (2004).

    Article  ADS  Google Scholar 

  48. Vlasov, Y. A., Kaliteevski, M. A. & Nikolaev, V. V. Different regimes of light localization in a disordered photonic crystal. Phys. Rev. B 60, 1555–1562 (1999).

    Article  ADS  Google Scholar 

  49. Mandelshtam, V. A. FDM: The filter diagonalization method for data processing in NMR experiments. Prog. Nucl. Magn. Reson. Spectrosc. 38, 159–196 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with G. Ruocco, C. Toninelli and D. Wiersma, and support from the INFM-CINECA initiative for parallel computing. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC grant agreement n.201766.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the research reported here.

Corresponding author

Correspondence to C. Conti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, C., Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys 4, 794–798 (2008). https://doi.org/10.1038/nphys1035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing