Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum non-demolition detection of strongly correlated systems

Abstract

Preparation, manipulation and detection of strongly correlated states of quantum many-body systems are among the most important goals and challenges of modern physics. Ultracold atoms offer an unprecedented playground for the realization of these goals. Here, we propose a method for detecting strongly correlated states of ultracold atoms in a quantum non-demolition scheme, that is, in the fundamentally least destructive way permitted by quantum mechanics. In our method, spatially resolved components of atomic spins couple to quantum polarization degrees of freedom of light. In this way, quantum correlations of matter are faithfully mapped on those of light; the latter can then be efficiently measured using homodyne detection. We illustrate the power of such spatially resolved quantum-noise-limited polarization measurement by applying this method to the detection of various standard and ‘exotic’ types of antiferromagnetic order in lattice systems, and by indicating the feasibility of detection of superfluid order in Fermi liquids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiferromagnetic states of spin-1 lattice systems.
Figure 2: Schematic diagram of the experimental set-up.
Figure 3: Detection of antiferromagnetic states of spin-1 lattice systems.
Figure 4: Two-dimensional states of dimers.

Similar content being viewed by others

References

  1. Lewenstein, M. et al. Ultracold atoms in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    Article  ADS  Google Scholar 

  2. Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    Article  ADS  Google Scholar 

  3. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    Article  ADS  Google Scholar 

  4. Rom, T. et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006).

    Article  ADS  Google Scholar 

  5. Lewenstein, M. The social life of atoms. Nature 445, 372–375 (2007).

    Article  ADS  Google Scholar 

  6. Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005).

    Article  ADS  Google Scholar 

  7. Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

    Article  ADS  Google Scholar 

  8. Öttl, A., Ritter, S., Kohl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    Article  ADS  Google Scholar 

  9. Mekhov, I. B., Maschler, C. & Ritsch, H. Cavity-enhanced light scattering in optical lattices to probe atomic quantum statistics. Phys. Rev. Lett. 98, 100402 (2007).

    Article  ADS  Google Scholar 

  10. Murch, K. V., Moore, K. A., Gupta, S. & Stamper-Kurn, D. M. Measurement of intracavity quantum fluctuations of light using an atomic fluctuation bolometer. Preprint at <http://www.arxiv.org/0706.1005>.

  11. Rey, A. M., Gritsev, V., Bloch, I., Demler, E. & Lukin, M. D. Preparation and detection of magnetic quantum phases in optical superlattices. Phys. Rev. Lett. 99, 140601 (2007).

    Article  ADS  Google Scholar 

  12. Braginsky, V. B. & Khalili, F. Quantum Measurements (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  13. Sørensen, J. L., Hald, J. & Polzik, E. S. Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487–3490 (1998).

    Article  ADS  Google Scholar 

  14. Inguscio, M. & Sasso, A. Spectroscopy, Laser 371 (Encyclopedia of Applied Physics, Vol. 19, VCH Publishers, Cambridge, 1997).

    Google Scholar 

  15. Kuzmich, K. A., Bigelow, N. P. & Mandel, L. Atomic quantum nondemolition measurements and squeezing. Europhys. Lett. 42, 481–486 (1998).

    Article  ADS  Google Scholar 

  16. Sherson, J., Julsgaard, B. & Polzik, E. S. Deterministic atom-light quantum interface. Adv. At. Mol. Opt. Phys. 54, 81–130 (2006).

    Article  ADS  Google Scholar 

  17. Eckert, K., Zawitkowski, Ł., Sanpera, A., Lewenstein, M. & Polzik, E. S. Quantum polarization spectroscopy of ultracold spinor gases. Phys. Rev. Lett. 98, 100404 (2007).

    Article  ADS  Google Scholar 

  18. Kupriyanov, D. V., Mishina, O. S., Sokolov, I. M., Julsgaard, B. & Polzik, E. S. Multimode entanglement of light and atomic ensembles via off-resonant coherent forward scattering. Phys. Rev. A 71, 032348 (2005).

    Article  ADS  Google Scholar 

  19. Hammerer, K., Mølmer, K., Polzik, E. S. & Cirac, J. I. Light-matter quantum interface. Phys. Rev. A 70, 044304 (2004).

    Article  ADS  Google Scholar 

  20. Misguich, G. & L’Huillier, C. in Frustrated Spin Systems (ed. Diep, H. T.) 229–306 (World Scientific, Singapore, 2004).

    Google Scholar 

  21. Alet, F., Walczak, A. M. & Fisher, M. P. A. Exotic quantum phases and phase transitions in correlated matter. Physica A 369, 122–142 (2006).

    Article  ADS  Google Scholar 

  22. Imambekov, A., Lukin, M. D. & Demler, E. Spin-exchange interactions of spin-one bosons in optical lattices: Singlet, nematic, and dimerized phases. Phys. Rev. A 68, 063602 (2003).

    Article  ADS  Google Scholar 

  23. Yip, S. K. Dimer state of spin-1 bosons in an optical lattice. Phys. Rev. Lett. 90, 250402 (2003).

    Article  ADS  Google Scholar 

  24. Buchta, K., Fáth, G., Legeza, Ö & Sólyom, J. Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain. Phys. Rev. B 72, 054433 (2005).

    Article  ADS  Google Scholar 

  25. Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).

    Article  ADS  Google Scholar 

  26. Romero-Isart, O., Eckert, K. & Sanpera, A. Quantum state transfer in spin-1 chains. Phys. Rev. A 75, 050303(R) (2007).

    Article  ADS  MathSciNet  Google Scholar 

  27. Weig, F. & Zwerger, W. Optical detection of a BCS transition of lithium-6 in harmonic traps. Europhys. Lett. 49, 282–288 (2000).

    Article  ADS  Google Scholar 

  28. Bruun, G. M. & Baym, G. Detection of BCS pairing in neutral Fermi fluids via stokes scattering: The Hebel–Slichter effect. Phys. Rev. Lett. 93, 150403 (2004).

    Article  ADS  Google Scholar 

  29. Greiner, M., Regal, C. A., Stewart, J. T. & Jin, D. S. Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 94, 110401 (2005).

    Article  ADS  Google Scholar 

  30. Parish, M. M., Marchetti, F. M., Lamagraft, A. & Simons, B. D. Finite temperature phase diagram of a polarized Fermi condensate. Nature Phys. 3, 124–128 (2007).

    Article  ADS  Google Scholar 

  31. Carusotto, I. & Castin, Y. Atom interferometric detection of the pairing order parameter in a Fermi gas. Phys. Rev. Lett. 94, 223202 (2005).

    Article  ADS  Google Scholar 

  32. Mihaila, B. et al. Density and spin response functions in ultracold fermionic atom gases. Phys. Rev. Lett. 95, 090402 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. I. Cirac for discussions. We acknowledge support from the EU IP Programmes SCALA, QAP, COVAQIAL, ESF PESC Programme QUDEDIS, Spanish MEC grants (FIS 2005-03169/04627, AP2005-0595, EX2005-0830, Consolider-Ingenio2010 CSD2006-00019 QOIT) and Catalan grant SGR-00185.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Anna Sanpera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, K., Romero-Isart, O., Rodriguez, M. et al. Quantum non-demolition detection of strongly correlated systems. Nature Phys 4, 50–54 (2008). https://doi.org/10.1038/nphys776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing