Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence

Abstract

Single dye molecules at cryogenic temperatures exhibit many spectroscopic phenomena known from the study of free atoms and are thus promising candidates for experiments in fundamental quantum optics. However, the existing techniques for their detection have either sacrificed information on the coherence of the excited state or have been inefficient. Here, we show that these problems can be addressed by focusing the excitation light near to the extinction cross-section of a molecule. Our detection scheme enables us to explore resonance fluorescence over nine orders of magnitude of excitation intensity and to separate its coherent and incoherent parts. In the strong excitation regime, we demonstrate the first direct observation of the Mollow fluorescence triplet from a single solid-state emitter. Under weak excitation, we report the detection of a single molecule with an incident power as faint as 600 aW, paving the way for studying nonlinear effects with only a few photons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The essential experimental information.
Figure 2: An example of a raw transmission spectrum, revealing a 11.5% dip determined by the lorentzian fit.
Figure 3: Coherent emission versus excitation power.
Figure 4: Separating the coherent and incoherent parts of molecular emission.
Figure 5: The Mollow triplet.
Figure 6: Few photons exciting a molecule.

Similar content being viewed by others

References

  1. Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1514–1517 (1992).

    Article  ADS  Google Scholar 

  2. Tamarat, P. et al. Pump-probe experiments with a single molecule: ac-stark effect and nonlinear optical response. Phys. Rev. Lett. 75, 1514–1518 (1995).

    Article  ADS  Google Scholar 

  3. Tamarat, P. et al. Non-linear optical response of single molecules. Chem. Phys. 245, 121–132 (1999).

    Article  Google Scholar 

  4. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    Article  ADS  Google Scholar 

  5. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  ADS  Google Scholar 

  6. Plakhotnik, T. & Palm, V. Interferometric signatures of single molecules. Phys. Rev. Lett. 87, 183602 (2001).

    Article  ADS  Google Scholar 

  7. Gerhardt, I. et al. Strong extinction of a laser beam by a single molecule. Phys. Rev. Lett. 98, 033601 (2007).

    Article  ADS  Google Scholar 

  8. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. Hijlkema, M. et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007).

    Article  ADS  Google Scholar 

  10. Press, D. et al. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007).

    Article  ADS  Google Scholar 

  11. Loudon, R. Quantum Theory of Light (Oxford Univ. Press, Oxford, 2000).

    MATH  Google Scholar 

  12. Mansfield, S. M. & Kino, G. S. Solid immersion microscope. Appl. Phys. Lett. 57, 2615–2616 (1990).

    Article  ADS  Google Scholar 

  13. Koyama, K., Yoshita, M., Baba, M., Suemoto, T. & Akiyama, H. High collection efficiency in fluorescence microscopy with a solid immersion lens. Appl. Phys. Lett. 75, 1667–1669 (1999).

    Article  ADS  Google Scholar 

  14. van Enk, S. J. & Kimble, H. J. Strongly focused light beams interacting with single atoms in free space. Phys. Rev. A 63, 023809 (2001).

    Article  ADS  Google Scholar 

  15. Gerardot, B. D. et al. Contrast in transmission spectroscopy of a single quantum dot. Appl. Phys. Lett. 90, 221106 (2007).

    Article  ADS  Google Scholar 

  16. Vamivakas, A. N. et al. Strong extinction of a far-field laser beam by a single quantum dot. Nano Lett. 7, 2892–2896 (2007).

    Article  ADS  Google Scholar 

  17. Karrai, K. & Warburton, R. J. Optical transmission and reflection spectroscopy of single quantum dots. Superlattices Microstruct. 33, 311–337 (2003).

    Article  ADS  Google Scholar 

  18. Gerhardt, I. et al. Scanning near-field optical coherent spectroscopy of single molecules at 1.4 kelvin. Opt. Lett. 32, 1420–1422 (2007).

    Article  ADS  Google Scholar 

  19. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (Wiley, New York, 1992).

    Google Scholar 

  20. Novotny, L., Grober, R. D. & Karrai, K. Reflected image of a strongly focused spot. Opt. Lett. 26, 789–791 (2001).

    Article  ADS  Google Scholar 

  21. Höffges, J. T., Baldauf, H. W., Lange, W. & Walther, H. Heterodyne measurement of the resonance fluorescence of a single ion. J. Mod. Opt. 44, 1999–2010 (1997).

    Article  ADS  Google Scholar 

  22. Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    Article  ADS  Google Scholar 

  23. Wu, F. Y., Grove, R. E. & Ezekiel, S. Investigation of the spectrum of resonance fluorescence induced by a monochromatic field. Phys. Rev. Lett. 35, 1426–1429 (1975).

    Article  ADS  Google Scholar 

  24. Walther, H. Advances in Atomic, Molecular and Optical Physics Vol. 51, 239–272 (Elsevier, Academic, Boston, 2005).

    Google Scholar 

  25. Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    Article  ADS  Google Scholar 

  26. Kiraz, A., Ehrl, M., Bräuchle, C. & Zumbusch, A. Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules. Appl. Phys. Lett. 85, 920–922 (2004).

    Article  ADS  Google Scholar 

  27. Domokos, P., Horak, P. & Ritsch, H. Quantum description of light-pulse scattering on a single atom in waveguides. Phys. Rev. A 65, 033832 (2002).

    Article  ADS  Google Scholar 

  28. Pfab, R. J. et al. Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl. Chem. Phys. Lett. 387, 490–495 (2004).

    Article  ADS  Google Scholar 

  29. Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

    Article  ADS  Google Scholar 

  30. van Enk, S. J. Atoms, dipole waves, and strongly focused light beams. Phys. Rev. A 69, 043813 (2004).

    Article  ADS  Google Scholar 

  31. Alù, A. & Engheta, N. Enhanced directivity from sub-wavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials. IEEE Trans. Antennas Propagation 55, 3027–3039 (2007).

    Article  ADS  Google Scholar 

  32. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  33. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  34. Boiron, A.-M., Lounis, B. & Orrit, M. Single molecules of dibenzanthanthrene in n-hexadecane. J. Chem. Phys. 105, 3969–3974 (1996).

    Article  ADS  Google Scholar 

  35. Felekyan, S. et al. Full correlation from picoseconds to second by time-resolved and time-correlated single photon detection. Rev. Sci. Inst. 76, 083104 (2005).

    Article  ADS  Google Scholar 

  36. Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).

    Article  ADS  Google Scholar 

  37. Lettow, R. et al. Realization of two Fourier-limited solid-state single-photon sources. Opt. Express 15, 15842–15847 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Renn for experimental support. This work was financed by the Schweizerische Nationalfond and the ETH Zurich initiative for Quantum Systems for Information Technology (QSIT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Gerhardt or V. Sandoghdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrigge, G., Gerhardt, I., Hwang, J. et al. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys 4, 60–66 (2008). https://doi.org/10.1038/nphys812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing