Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A non-volatile-memory device on the basis of engineered anisotropies in (Ga,Mn)As

Abstract

The rich anisotropic transport behaviour shown by ferromagnetic semiconductors arises from a complex interplay of their electronic density of states and magnetic response. Such behaviour promises to enable devices whose ability to manipulate information in the form of electronic spin goes well beyond the now ubiquitous spin-valve read heads of magnetoelectronics, and on a platform that is compatible with conventional complementary metal oxide semiconductor technology. Most ferromagnetic semiconductor devices so far have relied on the bulk anisotropic behaviour of their constituent layers. Recent improvements in lithographic patterning enable the fabrication of a novel class of devices in which the anisotropy of many individual elements can be independently engineered. Here we demonstrate the first such device consisting of two nanobars with mutually orthogonal easy axes linked by a constriction. It behaves as a non-volatile memory element, where information can be written by setting the relative orientation of the magnetization of the nanobars, and read by measuring the constriction resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscopy photograph of the device.
Figure 2: Polar plot showing the results of a ‘write–read’ experiment at 4 K.
Figure 3: Magnetoresistance of the device of Fig. 2.
Figure 4: The transport in a device with wider constriction is metallic.
Figure 5: Magnetization-direction-dependent hopping transport.
Figure 6: Domain wall manipulation.

Similar content being viewed by others

References

  1. Awschalom, D. D. & Flatté, M. F. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  ADS  Google Scholar 

  2. Åkerman, J. Toward a universal memory. Science 308, 508–510 (2005).

    Article  Google Scholar 

  3. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  ADS  Google Scholar 

  4. Parkin, S. S. P. Shiftable magnetic shift register and method of using the same. US patent 6,834,005 (2004).

  5. Baxter, D. V. et al. Anisotropic magnetoresistance in Ga1−xMnxAs. Phys. Rev. B 65, 212407 (2002).

    Article  ADS  Google Scholar 

  6. Tang, H. X., Kawakami, R. K., Awschalom, D. D. & Roukes, M. L. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90, 107201 (2003).

    Article  ADS  Google Scholar 

  7. Gould, C. et al. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    Article  ADS  Google Scholar 

  8. Rüster, C. et al. Very large tunneling anisotropic magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As stack. Phys. Rev. Lett. 94, 027203 (2005).

    Article  ADS  Google Scholar 

  9. Pappert, K. et al. Magnetization-switched metal–insulator transition in a (Ga,Mn)As tunnel device. Phys. Rev. Lett. 97, 186402 (2006).

    Article  ADS  Google Scholar 

  10. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

    Article  ADS  Google Scholar 

  11. Hümpfner, S. et al. Lithographic engineering of anisotropies in (Ga,Mn)As. Appl. Phys. Lett. 90, 102102 (2007).

    Article  ADS  Google Scholar 

  12. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539 (2004).

    Article  ADS  Google Scholar 

  13. Gould, C. et al. Current assisted magnetization switching in (Ga,Mn)As nanodevices. Jpn. J. Appl. Phys. 45, 3860–3862 (2006).

    Article  ADS  Google Scholar 

  14. Jan, J. P. in Solid State Physics (eds Seitz, F. & Turnbull, D.) (Academic, New York, 1957).

    Google Scholar 

  15. McGuire, T. R. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  ADS  Google Scholar 

  16. Rushforth, A. W. et al. AMR and magnetometry studies of ultra thin GaMnAs films. Phys. Status Solidi C 3, 4078–4081 (2006).

    Article  ADS  Google Scholar 

  17. Schmidt, M. J. et al. Bound hole states in a ferromagnetic (Ga,Mn)As environment. Preprint at <http://arxiv.org/abs/cond-mat/0704.2028> (2007).

  18. Rüster, C. et al. Very large magnetoresistance in lateral ferromagnetic (Ga,Mn)As wires with nanoconstrictions. Phys. Rev. Lett. 91, 216602 (2003).

    Article  ADS  Google Scholar 

  19. Bruno, P. Geometrically constrained magnetic wall. Phys. Rev. Lett. 83, 2425 (1999).

    Article  ADS  Google Scholar 

  20. For details of the growth, see Schott, G. M. et al. Influence of growth conditions on the lattice constant and composition of (Ga,Mn)As. Appl. Phys. Lett. 82, 4678–4680 (2003).

    Article  ADS  Google Scholar 

  21. Baca, A. G. & Ashby, C. I. H. Fabrication of GaAs Devices (IEE, London, 2005).

    Book  Google Scholar 

  22. Matsukura, F. et al. Magnetotransport properties of metallic (Ga,Mn)As films with compressive and tensile strain. Physica E 21, 1032–1036 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Sawicki and M. J. Schmidt for useful discussions and V. Hock and T. Borzenko for help in sample fabrication. We acknowledge financial support from the EU (NANOSPIN FP6-IST-015728) and the German DFG (BR1960/2-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Gould or Laurens W. Molenkamp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappert, K., Hümpfner, S., Gould, C. et al. A non-volatile-memory device on the basis of engineered anisotropies in (Ga,Mn)As. Nature Phys 3, 573–578 (2007). https://doi.org/10.1038/nphys652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing