Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic vortex oscillator driven by d.c. spin-polarized current

Abstract

Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the magnetization dynamics of nanomagnets. A peculiar consequence of this spin torque, the ability to induce persistent oscillations in a nanomagnet by applying a d.c. current, has previously been reported only for spatially uniform nanomagnets. Here, we demonstrate that a quintessentially non-uniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin-valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized d.c. current. Comparison with micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz at 1.1 GHz, making these highly compact spin-torque vortex-oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GMR and microwave data for sample 1.
Figure 2: Micromagnetic simulation for I=6.6 mA and H =200Oe.
Figure 3: Dependence of microwave frequencies on H for sample 2.
Figure 4: Dependence of microwave frequencies on H for sample 1.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  Google Scholar 

  3. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  ADS  Google Scholar 

  4. Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater. 5, 210–215 (2006).

    Article  ADS  Google Scholar 

  5. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  ADS  Google Scholar 

  6. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  7. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  ADS  Google Scholar 

  8. Wegrove, J. E., Kelly, D., Guitienne, P., Jaccard, Y. & Ansermet, J. P. Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45, 626–632 (1999).

    Article  ADS  Google Scholar 

  9. Sun, J. Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).

    Article  ADS  Google Scholar 

  10. Özyilmaz, B. et al. Current-induced magnetization reversal in high magnetic fields in Co/Cu/Co nanopillars. Phys. Rev. Lett. 91, 067203 (2003).

    Article  ADS  Google Scholar 

  11. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

    Article  ADS  Google Scholar 

  12. Krivorotov, I. N. et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

    Article  ADS  Google Scholar 

  13. Acremann, Y. et al. Time-resolved imaging of spin transfer switching: Beyond the macrospin concept. Phys. Rev. Lett. 96, 217202 (2006).

    Article  ADS  Google Scholar 

  14. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  ADS  Google Scholar 

  15. Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

    Article  ADS  Google Scholar 

  16. Guslienko, K. Yu. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037–8039 (2002).

    Article  ADS  Google Scholar 

  17. Park, J. P., Eames, P., Engebretson, D. M., Berezovsky, J. & Crowell, P. A. Imaging of spin dynamics in closure domain and vortex structures. Phys. Rev. B 67, 020403(R) (2003).

    Article  ADS  Google Scholar 

  18. Choe, S.-B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    Article  ADS  Google Scholar 

  19. Novosad, V. et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).

    Article  ADS  Google Scholar 

  20. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  ADS  Google Scholar 

  21. Yamada, K. et al. Electrical switching of a vortex core in a magnetic disk. Nature Mater. 6, 269–273 (2007).

    Article  ADS  Google Scholar 

  22. Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H. & Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).

    Article  ADS  Google Scholar 

  23. Bode, M. et al. Thickness dependent magnetization states of Fe islands on W(110): From single domain to vortex and diamond patterns. Appl. Phys. Lett. 84, 948–950 (2004).

    Article  ADS  Google Scholar 

  24. Cowburn, R. P., Koltsov, D. K., Adeyeye, A. O., Welland, M. E. & Tricker, D. M. Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042–1045 (1999).

    Article  ADS  Google Scholar 

  25. Donahue, M. J. & Porter, D. G. OOMMF User’s Guide, Version 1.0. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, 1999).

  26. Rahm, M., Biberger, J., Umansky, V. & Weiss, D. Vortex pinning at individual defects in magnetic nanodisks. J. Appl. Phys. 93, 7429–7431 (2003).

    Article  ADS  Google Scholar 

  27. Uhlig, T. et al. Shifting and pinning of a magnetic vortex core in a permalloy dot by a magnetic field. Phys. Rev. Lett. 95, 237205 (2005).

    Article  ADS  Google Scholar 

  28. Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J. & Russek, S. E. Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70, 100406(R) (2004).

    Article  ADS  Google Scholar 

  29. Emley, N. C. et al. Time-resolved spin-torque switching and enhanced damping in permalloy/Cu/permalloy spin-valve nanopillars. Phys. Rev. Lett. 96, 247204 (2006).

    Article  ADS  Google Scholar 

  30. Sankey, J. C. et al. Mechanisms limiting the coherence time of spontaneous magnetic oscillations driven by d.c. spin-polarized currents. Phys. Rev. B 72, 224427 (2005).

    Article  ADS  Google Scholar 

  31. Compton, R. L. & Crowell, P. A. Dynamics of a pinned magnetic vortex. Phys. Rev. Lett. 97, 137202 (2006).

    Article  ADS  Google Scholar 

  32. Kiselev, S. I. et al. Spin-transfer excitations of permalloy nanopillars for large applied currents. Phys. Rev. B 72, 064430 (2005).

    Article  ADS  Google Scholar 

  33. Lax, M. Classical noise. V. Noise in self-sustained oscillators. Phys. Rev. 160, 290–307 (1967).

    Article  ADS  Google Scholar 

  34. Kim, J.-V. Stochastic theory of spin-transfer oscillator linewidths. Phys. Rev. B 73, 174412 (2006).

    Article  ADS  Google Scholar 

  35. Xiao, J., Zangwill, A. & Stiles, M. D. Boltzmann test of Slonczewski’s theory of spin-transfer torque. Phys. Rev. B 70, 172405 (2004).

    Article  ADS  Google Scholar 

  36. Soulen, R. J. Jr et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Crowell for useful discussions and materials and M. Donahue for helpful guidance on the OOMMF simulations. This research was supported in part by the National Science Center through the NSEC program support for the Center for Nanoscale Systems, by ARO-DAAD19-01-1-0541 and by the Office of Naval Research/MURI program. Additional support was provided by NSF through use of the facilities of the Cornell Nanoscale Facility—NNIN and the facilities of the Cornell MRSEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Buhrman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pribiag, V., Krivorotov, I., Fuchs, G. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys 3, 498–503 (2007). https://doi.org/10.1038/nphys619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing