Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasma mirrors for ultrahigh-intensity optics

Abstract

Specular reflection is one of the most fundamental processes of optics. At moderate light intensities generated by conventional light sources this process is well understood. But at those capable of being produced by modern ultrahigh-intensity lasers, many new and potentially useful phenomena arise. When a pulse from such a laser hits an optically polished surface, it generates a dense plasma that itself acts as a mirror, known as a plasma mirror (PM). PMs do not just reflect the remainder of the incident beam, but can act as active optical elements. Using a set of three consecutive PMs in different regimes, we significantly improve the temporal contrast of femtosecond pulses, and demonstrate that high-order harmonics of the laser frequency can be generated through two distinct mechanisms. A better understanding of these processes should aid the development of laser-driven attosecond sources for use in fields from materials science to molecular biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal profile of the laser pulses delivered by a 10 TW, 60 fs laser system, in logarithmic scale, with and without the DPM.
Figure 2: Spatial profile of the harmonic extreme-ultraviolet beam.
Figure 3: Schematic diagrams of different stages of the coherent wake emission process.
Figure 4: Harmonic spectra from plasma mirrors.
Figure 5: Relativistic oscillating mirror mechanism.
Figure 6: Harmonic spectrum dependency on the laser intensity.

Similar content being viewed by others

References

  1. Rolland, C. & Corkum, P. B. Generation of 130-fsec midinfrared pulses. J. Opt. Soc. Am. B 3, 1625–1629 (1986).

    Article  ADS  Google Scholar 

  2. Teubner, U., Wagner, U. & Forster, E. Sub-10 fs gating of optical pulses. J. Phys. B 34, 2993–3002 (2001).

    Article  ADS  Google Scholar 

  3. Kapteyn, H. C., Murnane, M. M., Szoke, A. & Falcone, R. W. Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490–492 (1991).

    Article  ADS  Google Scholar 

  4. Doumy, G. et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004).

    Article  ADS  Google Scholar 

  5. Dromey, B., Kar, S., Zepf, M. & Foster, P. The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75, 645–649 (2004).

    Article  ADS  Google Scholar 

  6. Mourou, G. A., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  7. Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    Article  ADS  Google Scholar 

  8. Plaja, L., Roso, L., Rzazewski, K. & Lewenstein, M. Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface. J. Opt. Soc. Am. B 15, 1904–1911 (1998).

    Article  ADS  Google Scholar 

  9. Gordienko, S., Pukhov, A., Shorokhov, O. & Baeva, T. Relativistic doppler effect: Universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002 (2004).

    Article  ADS  Google Scholar 

  10. Naumova, N. M., Nees, J. A., Sokolov, I. V., Hou, B. & Mourou, G. A. Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902 (2004).

    Article  ADS  Google Scholar 

  11. Tsakiris, G., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    Article  ADS  Google Scholar 

  12. Baeva, T., Gordienko, S. & Pukhov, A. Relativistic plasma control for single attosecond x-ray burst generation. Phys. Rev. E 74, 065401 (2006).

    Article  ADS  Google Scholar 

  13. Agostini, P. & DiMauro, L. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813 (2004).

    Article  ADS  Google Scholar 

  14. Monot, P. et al. High-order harmonic generation by nonlinear reflection of an intense high-contrast laser pulse on a plasma. Opt. Lett. 29, 893–895 (2004).

    Article  ADS  Google Scholar 

  15. Watts, I. et al. Measurements of relativistic self-phase-modulation in plasma. Phys. Rev. E 66, 036409 (2002).

    Article  ADS  Google Scholar 

  16. Luan, S., Hutchinson, M., Smith, R. & Zhou, F. High dynamic-range 3rd-order correlation-measurement of picosecond laser-pulse shapes. Meas. Sci. Technol. 4, 1426–1429 (1993).

    Article  ADS  Google Scholar 

  17. Chvykov, V., Rousseau, P., Reed, S., Kalinchenko, G. & Yanovsky, V. Generation of 1011 contrast 50 TW laser pulses. Opt. Lett. 31, 1456–1458 (2006).

    Article  ADS  Google Scholar 

  18. Zhang, J. et al. Coherence and bandwidth measurements of harmonics generated from solid surfaces irradiated by intense picosecond laser pulses. Phys. Rev. A 54, 1597–1603 (1996).

    Article  ADS  Google Scholar 

  19. Carman, R. L., Forslund, D. W. & Kindel, J. M. Visible harmonic emission as a way of measuring profile steepening. Phys. Rev. Lett. 46, 29–32 (1981).

    Article  ADS  Google Scholar 

  20. Carman, R. L., Rhodes, C. K. & Benjamin, R. F. Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas. Phys. Rev. A 24, 2649–2663 (1981).

    Article  ADS  Google Scholar 

  21. Bezzerides, B., Jones, R. D. & Forslund, D. W. Plasma mechanism for ultraviolet harmonic radiation due to intense CO2 light. Phys. Rev. Lett. 49, 202–205 (1982).

    Article  ADS  Google Scholar 

  22. Grebogi, C., Tripathi, V. K. & Chen, H. Harmonic generation of radiation in a steep density profile. Phys. Fluids 26, 1904–1908 (1983).

    Article  ADS  Google Scholar 

  23. Wilks, S. C., Kruer, W. L. & Mori, W. B. Odd harmonic-generation of ultra-intense laser-pulses reflected from an overdense plasma. IEEE Trans. Plasma Sci. 21, 120–124 (1993).

    Article  ADS  Google Scholar 

  24. Bulanov, S. V., Naumova, N. M. & Pegoraro, F. Interaction of an ultrashort, relativistically strong laser-pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994).

    Article  ADS  Google Scholar 

  25. Gibbon, P. Harmonic generation by femtosecond laser-solid interaction: A coherent water-window light source? Phys. Rev. Lett. 76, 50–53 (1996).

    Article  ADS  Google Scholar 

  26. Lichters, R., Meyer-ter-Vehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

    Article  ADS  Google Scholar 

  27. von der Linde, D. & Rzàzewski, K. High-order optical harmonic generation from solid surfaces. Appl. Phys. B 63, 499–506 (1996).

    Article  ADS  Google Scholar 

  28. Ondarza-Rovira, R. & Boyd, T. J. M. Plasma harmonic emission from laser interactions with dense plasma. Phys. Plasmas 7, 1520–1530 (2000).

    Article  ADS  Google Scholar 

  29. Pirozhkov, A. S. et al. Attosecond pulse generation in the relativistic regime of the laser-foil interaction: The sliding mirror model. Phys. Plasmas 13, 013107 (2006).

    Article  ADS  Google Scholar 

  30. Baeva, T., Gordienko, S. & Pukhov, A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006).

    Article  ADS  Google Scholar 

  31. Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    Article  ADS  Google Scholar 

  32. Teubner, U. et al. Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses. Phys. Rev. Lett. 92, 185001 (2004).

    Article  ADS  Google Scholar 

  33. Watts, I. et al. Dynamics of the critical surface in high-intensity laser-solid interactions: Modulation of the XUV harmonic spectra. Phys. Rev. Lett. 88, 155001 (2002).

    Article  ADS  Google Scholar 

  34. von der Linde, D. et al. Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses. Phys. Rev. A 52, R25 (1995).

    Article  ADS  Google Scholar 

  35. Norreys, P. A. et al. Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets. Phys. Rev. Lett. 76, 1832–1835 (1996).

    Article  ADS  Google Scholar 

  36. Tarasevitch, A. et al. Generation of high-order spatially coherent harmonics from solid targets by femtosecond laser pulses. Phys. Rev. A 62, 023816 (2000).

    Article  ADS  Google Scholar 

  37. Teubner, U. et al. Anomalies in high-order harmonic generation at relativistic intensities. Phys. Rev. A 67, 013816 (2003).

    Article  ADS  Google Scholar 

  38. Brunel, F. Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

    Article  ADS  Google Scholar 

  39. Bonnaud, G., Gibbon, P., Kindel, J. & Williams, E. Laser interaction with a sharp-edged overdense plasma. Laser Part. Beams 9, 339–354 (1991).

    Article  ADS  Google Scholar 

  40. Jackson, J. Classical Electrodynamics (Wiley, New York, 1998).

    MATH  Google Scholar 

  41. Sheng, Z. M., Mima, K., Zhang, J. & Sanuki, H. Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003 (2005).

    Article  ADS  Google Scholar 

  42. Sheng, Z. M., Mima, K. & Zhang, J. Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103 (2005).

    Article  ADS  Google Scholar 

  43. Szipocs, R., Ferencz, K., Spielmann, C. & Krausz, F. Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers. Opt. Lett. 19, 201–203 (1994).

    Article  ADS  Google Scholar 

  44. Varju, K. et al. Frequency chirp of harmonic and attosecond pulses. J. Mod. Opt. 52, 379–394 (2005).

    Article  ADS  Google Scholar 

  45. Fisch, N. J. & Malkin, V. M. Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 2056–2063 (2003).

    Article  ADS  Google Scholar 

  46. Wu, H. C., Sheng, Z. M., Zhang, Q. J., Cang, Y. & Zhang, J. Manipulating ultrashort intense laser pulses by plasma Bragg gratings. Phys. Plasmas 12, 113103 (2005).

    Article  ADS  Google Scholar 

  47. Faure, J. et al. Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95, 205003 (2005).

    Article  ADS  Google Scholar 

  48. Stibenz, G., Zhavoronkov, N. & Steinmeyer, G. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274–276 (2006).

    Article  ADS  Google Scholar 

  49. Takahashi, E. J., Hasegawa, H., Nabekawa, Y. & Midorikawa, K. High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region. Opt. Lett. 29, 507–509 (2004).

    Article  ADS  Google Scholar 

  50. Bonnaud, G. & Reisse, G. Particle code study of the influence of non-monochromaticity of laser-light on stimulated Raman-scattering in laser-irradiated plasmas. Nucl. Fusion 26, 633–646 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Conseil Général de l’Essonne (ASTRE program) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Quéré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaury, C., Quéré, F., Geindre, JP. et al. Plasma mirrors for ultrahigh-intensity optics. Nature Phys 3, 424–429 (2007). https://doi.org/10.1038/nphys595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing