Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gigahertz quantized charge pumping

Abstract

The high-speed, high-accuracy transport of single electrons in nanoscale devices is predicted to underpin future electronics. A key and topical application is the development of a fundamental standard of electrical current linking the ampere to the elementary charge and frequency. For a practical standard, currents at the nanoampere level are required, corresponding to gigahertz transport frequencies. Recent research has concentrated on transport using Coulomb blockade techniques. However, the tunnelling time of the electrons in such devices limits the operation to a few megahertz. We present a different pumping mechanism of single charges, whereby electrons ‘surf’ as particles on a time-dependent potential instead of tunnelling through the barriers as waves. This potential is created by two phase-shifted sinusoidal signals applied directly to metallic finger gates on an etched GaAs/AlGaAs quantum wire. Pumping accurate to better than 10−4, at a frequency up to 3.4 GHz, is reported with this approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active region of the device with corresponding electronic set-up.
Figure 2: Pumping mechanism and application of the gate voltage signals.
Figure 3: Two-dimensional grey-scale plots of pumped current.
Figure 4: Pumped quantized current plateaux.

Similar content being viewed by others

References

  1. Mills, I. M., Mohr, P. J., Quinn, T. J., Taylor, B. N. & Williams, E. R. Redefinition of the kilogram, ampere, kelvin and mole: A proposed approach to implementing CIPM recommendation 1 (ci-2005). Metrologia 43, 227–246 (2006).

    Article  ADS  Google Scholar 

  2. Geerligs, L. J. et al. Frequency-locked turnstile device for single electrons. Phys. Rev. Lett. 64, 2691–2694 (1990).

    Article  ADS  Google Scholar 

  3. Anderegg, V. F. et al. Frequency-determined current with a turnstile device for single electrons. Physica B 165–166, 61 (1990).

    Article  ADS  Google Scholar 

  4. Kouwenhoven, L. P., Johnson, A. T., van der Vaart, N. C. & Harmans, C. J. P. M. Quantized current in a quantum-dot turnstile using oscillating tunnel barriers. Phys. Rev. Lett. 67, 1626 (1991).

    Article  ADS  Google Scholar 

  5. Devoret, M. H., Esteve, D. & Urbina, C. Single-electron transfer in metallic nanostructures. Nature 360, 547–553 (1992) http://dx.doi.org/10.1038/360547a0.

    Article  ADS  Google Scholar 

  6. Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Single-electron pump based on charging effects. Europhys. Lett. 17, 249–254 (1992).

    Article  ADS  Google Scholar 

  7. Keller, M. W., Martinis, J. M., Zimmerman, N. M. & Steinbach, A. H. Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 69, 1804 (1996).

    Article  ADS  Google Scholar 

  8. Keller, M. W., Eichenberger, A. L., Martinis, J. M. & Zimmerman, N. M. A capacitance standard based on counting electrons. Science 285, 1706 (1999).

    Article  Google Scholar 

  9. Piquemal, F. et al. Fundamental electrical standards and the quantum metrological triangle. Comptes Rendus Phys. 5, 857–879 (2004).

    Article  ADS  Google Scholar 

  10. Shilton, J. M. et al. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J. Phys. Condens. Matter 8, L531–L539 (1996).

    Article  Google Scholar 

  11. Thornton, T. J., Pepper, M., Ahmed, H., Andrews, D. & Davies, G. J. One-dimensional conduction in the 2d electron gas of a GaAs–AlGaAs heterojunction. Phys. Rev. Lett. 56, 1198–1201 (1986).

    Article  ADS  Google Scholar 

  12. Fujiwara, A., Zimmerman, N. M., Ono, Y. & Takahashi, Y. Current quantization due to single-electron transfer in Si-wire charge coupled devices. Appl. Phys. Lett. 84, 1323 (2004).

    Article  ADS  Google Scholar 

  13. Moskalets, M. & Büttiker, M. Floquet scattering theory of quantum pumps. Phys. Rev. B 66, 205320 (2002).

    Article  ADS  Google Scholar 

  14. Nagamune, Y. et al. Single electron transport and current quantization in a novel quantum dot structure. Appl. Phys. Lett. 64, 2379 (1994).

    Article  ADS  Google Scholar 

  15. Robinson, A. M. & Barnes, C. H. W. Classical dynamics of electrons in quantized-acoustoelectric-current devices. Phys. Rev. B 63, 165418 (2001).

    Article  ADS  Google Scholar 

  16. Flensberg, K., Niu, Q. & Pustilnik, M. Nonadiabaticity and single-electron transport driven by surface acoustic waves. Phys. Rev. B 60, R16291–R16294 (1999).

    Article  ADS  Google Scholar 

  17. Aizin, G. R., Gumbs, G. & Pepper, M. Screening of the surface-acoustic-wave potential by a metal gate and the quantization of the acoustoelectric current in a narrow channel. Phys. Rev. B 58, 10589–10596 (1998).

    Article  ADS  Google Scholar 

  18. Gumbs, G., Aizin, G. R. & Pepper, M. Coulomb interaction of two electrons in the quantum dot formed by the surface acoustic wave in a narrow channel. Phys. Rev. B 60, R13954–R13957 (1999).

    Article  ADS  Google Scholar 

  19. Zimmerman, N. M., Hourdakis, E., Ono, Y., Fujiwara, A. & Takahashi, Y. Error mechanisms and rates in tunable-barrier single-electron turnstiles and charge coupled devices. J. Appl. Phys. 96, 5254 (2004).

    Article  ADS  Google Scholar 

  20. Janssen, T. J. B. M. & Hartland, A. Accurate measurement of currents generated by single electrons transported in a one-dimensional channel. IEEE Proc.-Sci. Meas. Technol. 147, 174–176 (2000).

    Article  Google Scholar 

  21. Ebbecke, J., Fletcher, N. E., Ahlers, F., Hartland, A. & Janssen, T. J. B. M. Study on the limitations of the quantized acoustic current technique at PTB and NPL. IEEE Trans. Instrum. Meas. 52, 594 (2003).

    Article  Google Scholar 

  22. Barnes, C. H. W., Shilton, J. M. & Robinson, A. M. Quantum computation using electrons trapped by surface acoustic waves. Phys. Rev. B 62, 8410 (2000).

    Article  ADS  Google Scholar 

  23. Gumbs, G. & Abranyos, Y. Quantum entanglement for acoustic spintronics. Phys. Rev. A 70, 050302 (2004).

    Article  ADS  Google Scholar 

  24. Foden, C. L., Talyanskii, V. I., Milburn, G. J., Leadbeater, M. L. & Pepper, M. High-frequency acousto-electric single-photon source. Phys. Rev. A 62, 011803 (2000).

    Article  ADS  Google Scholar 

  25. Gell, J. R. et al. Surface-acoustic-wave-driven luminescence from a lateral p–n junction. Appl. Phys. Lett. 89, 243505 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge A. Robinson, S. Amakawa, V. Kashcheyevs and H. W. Schumacher for useful discussions. Acknowledgment also goes to K. Cooper and J. Griffiths for advice and work on the fabrication of the devices. This work was supported by the UK National Measurement System and the EPSRC. L.L. acknowledges support by the National Nature Science Foundation of China under grant No 60436010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Blumenthal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenthal, M., Kaestner, B., Li, L. et al. Gigahertz quantized charge pumping. Nature Phys 3, 343–347 (2007). https://doi.org/10.1038/nphys582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing