Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping surface plasmons on a single metallic nanoparticle

Abstract

Understanding how light interacts with matter at the nanometre scale is a fundamental issue in optoelectronics and nanophotonics. In particular, many applications (such as bio-sensing, cancer therapy and all-optical signal processing) rely on surface-bound optical excitations in metallic nanoparticles. However, so far no experimental technique has been capable of imaging localized optical excitations with sufficient resolution to reveal their dramatic spatial variation over one single nanoparticle. Here, we present a novel method applied on silver nanotriangles, achieving such resolution by recording maps of plasmons in the near-infrared/visible/ultraviolet domain using electron beams instead of photons. This method relies on the detection of plasmons as resonance peaks in the energy-loss spectra of subnanometre electron beams rastered on nanoparticles of well-defined geometrical parameters. This represents a significant improvement in the spatial resolution with which plasmonic modes can be imaged, and provides a powerful tool in the development of nanometre-level optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STEM–EELS measurements on an equilateral Ag nanoprism with 78-nm-long sides.
Figure 2: Experimental and simulated EEL spectra.
Figure 3: Experimental and simulated EELS amplitude maps.
Figure 4: Experimental EELS study of an asymmetric triangular Ag nanoprism.

Similar content being viewed by others

References

  1. Hao, E., Schatz, G. C. & Hupp, J. T. Synthesis and optical properties of anisotropic metal nanoparticles. J. Fluoresc. 14, 331–341 (2004).

    Article  Google Scholar 

  2. Krenn, J. R. et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590–2593 (1999).

    Article  ADS  Google Scholar 

  3. Sherry, L., Jin, R., Mirkin, C., Schatz, G. & VanDuyne, R. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 6, 2060–2065 (2006).

    Article  ADS  Google Scholar 

  4. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, C. H., Silcox, J. & Vincent, R. Electron-energy losses in silicon: Bulk and surface plasmons and C˜erenkov radiation. Phys. Rev. B 12, 64–71 (1973).

    Article  ADS  Google Scholar 

  6. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Tracts in Modern Physics, Vol. 111, Springer, Berlin, 1988).

    Book  Google Scholar 

  7. Ferrell, T. L. & Echenique, P. M. Generation of surface excitations on dielectric spheres by an external elctron-beam. Phys. Rev. Lett. 55, 1526–1529 (1985).

    Article  ADS  Google Scholar 

  8. García de Abajo, F. J. Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Phys. Rev. B 59, 3095–3107 (1999).

    Article  ADS  Google Scholar 

  9. Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).

    Article  ADS  Google Scholar 

  10. Ugarte, D., Colliex, C. & Trebbia, P. Surface-plasmon and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992).

    Article  ADS  Google Scholar 

  11. Arenal, R. et al. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005).

    Article  ADS  Google Scholar 

  12. Khan, I. R. et al. A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discuss. 132, 171–178 (2006).

    Article  ADS  Google Scholar 

  13. Yamamoto, N., Araya, K. & García de Abajo, F. J. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 6420, 205419 (2001).

    Article  ADS  Google Scholar 

  14. Bastys, V., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., Vaisnoras, R. & Liz-Marzan, L. M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater. 16, 766–773 (2006).

    Article  Google Scholar 

  15. Jeanguillaume, C. & Colliex, C. Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252–257 (1989).

    Article  Google Scholar 

  16. Gloter, A., Douiri, A., Tencé, M. & Colliex, C. Improving energy resolution of EELS spectra: An alternative to the monochromator solution. Ultramicroscopy 96, 385–400 (2003).

    Article  Google Scholar 

  17. Ouyang, F., Batson, P. & Isaacson, M. Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).

    Article  ADS  Google Scholar 

  18. Kelly, K. L., Coronado, E., Zhao, L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  Google Scholar 

  19. Kociak, M., Stephan, O., Taverna, D., Nelayah, J. & Colliex, C. Probing surface plasmons on individual nano-objects by near-field electron energy loss spectroscopy. Proc. SPIE 5927, 592711 (2005).

    Article  Google Scholar 

  20. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    Article  ADS  Google Scholar 

  21. García de Abajo, F. J. & Howie, A. Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics. Phys. Rev. Lett. 80, 5180–5183 (1998).

    Article  ADS  Google Scholar 

  22. García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).

    Article  ADS  Google Scholar 

  23. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  24. Lindhard, J. On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 1–57 (1954).

    MathSciNet  MATH  Google Scholar 

  25. García de Abajo, F. J. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).

    Article  ADS  Google Scholar 

  26. Dereux, A., Girard, C. & Weeber, J. C. Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775–7789 (2000).

    Article  ADS  Google Scholar 

  27. Joulain, K., Carminati, R., Mulet, J. P. & Greffet, J. J. Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003).

    Article  ADS  Google Scholar 

  28. Muller, D. A. & Silcox, J. Delocalization in inelastic-scattering. Ultramicroscopy 59, 195–213 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Centre National de la Recherche Scientifique (CNRS) through the ACN NR131, the Spanish Ministerio de Educaciø´n y Ciencia (Project No. MAT2004-02991) and the EU project No. STRP-016881-SPANS. L.H. is supported by the Belgian FNRS and the Belgian interuniversity project PAI-IUAP 5/01.

Author information

Authors and Affiliations

Authors

Contributions

This is a collective study in which members at (1) have mostly carried out experiments and measurements, members at (2) and (3) have mostly contributed to modelling and members at (4) have been responsible for the synthesis of the Ag nanoprisms.

Corresponding author

Correspondence to Odile Stéphan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelayah, J., Kociak, M., Stéphan, O. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys 3, 348–353 (2007). https://doi.org/10.1038/nphys575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing