Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity

Abstract

Actin filament networks with protein crosslinks of distinct length and flexibility resemble liquid crystal elastomers. We simulate actin filament systems with flexible crosslinkers of varying length and connectivity to understand general phase behaviour and elasticity. Simulated networks with very short filaments and long crosslinkers resemble the cytoskeleton of the red blood cell and remain isotropic in compression and shear, seeming well-suited to blood flow. In contrast, networks with longer filaments as found in many cell types show three regimes of nematic phase behaviour dependent on crosslinker length: (1) ‘loose’ networks are isotropic at zero stress but align under compression or shear; (2) ‘semi-loose’ networks are nematic at low stress but become isotropic under dilation and (3) ‘tight’ networks possess a locked-in nematic order as represented by the cytoskeleton of the outer hair cell in the ear, for which anisotropic compliance directs sound propagation. Furthermore, for a subset of loose networks with ‘periodic’ connections among filaments, extremely soft stress–strain behaviour is found, as predicted for liquid crystal elastomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prototypical membrane cytoskeletons with crosslinked actin filaments.
Figure 2: Density-dependent phase behaviour for loose networks and uncrosslinked fluids as a function of Lactin/Dactin with Lactin/LX<χloose.
Figure 3: Phase diagram with shear for loose networks (Lactin/LX<χloose).
Figure 4: Effects of LX on networks with Lactin/Dactin>η.
Figure 5: The nature of network crosslinking plays a key role in response to shear.

Similar content being viewed by others

References

  1. Keller, M., Tharmann, R., Dichtl, M. A., Bausch, A. R. & Sackmann, E. Slow filament dynamics and viscoelasticity in entangled and active actin networks. Phil. Trans. R. Soc. Lond. Ser. A 361, 699–711 (2003).

    Article  ADS  Google Scholar 

  2. Uhde, J., Keller, M., Sackmann, E., Parmeggiani, A. & Frey, E. Internal motility in stiffening actin–myosin networks. Phys. Rev. Lett. 31, 268101 (2004).

    Article  ADS  Google Scholar 

  3. Wang, K., Ash, J. F. & Singer, S. J. Filamin, a new high-molecular-weight protein found in smooth-muscle and non-muscle cells. Proc. Natl Acad. Sci. USA 72, 4483–4486 (1975).

    Article  ADS  Google Scholar 

  4. Speicher, D. W. & Marchesi, V. T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311, 177–180 (1984).

    Article  ADS  Google Scholar 

  5. Byers, T. J. & Branton, D. Visualization of the protein associations in the erythrocyte-membrane skeleton. Proc. Natl Acad. Sci. USA 82, 6151–6157 (1985).

    ADS  Google Scholar 

  6. Debreuil, R., Byers, T. J., Branton, D., Goldstein, L. S. & Kiehart, D. P. Drosophila spectrin 2. conserved feaures of the alpha-subunit are revealed by analysis of cDNA clones and fusion proteins. J. Cell Biol. 105, 2095–2102 (1987).

    Article  Google Scholar 

  7. Welch, M. D., Holtzman, D. A. & Drubin, D. G. The yeast actin cytoskeleton. Curr. Opin. Cell Biol. 6, 110–119 (1994).

    Article  Google Scholar 

  8. Holley, M. C. & Ashmore, J. F. A cytoskeletal spring in cochlear outer hair-cells. Nature 335, 635–637 (1988).

    Article  ADS  Google Scholar 

  9. Wada, H. et al. Imaging of the cortical cytoskeleton of guinea pig outer hair cells using atomic force microscopy. Hearing Res. 187, 51–62 (2004).

    Article  Google Scholar 

  10. Borukhov, I., Bruinsma, R. F., Gelbart, W. M. & Liu, A. J. Structural polymorphism of the cytoskeleton: a model of linker-assisted filament aggregation. Proc. Natl Acad. Sci. USA 102, 3673–3678 (2005).

    Article  ADS  Google Scholar 

  11. Wilhelm, J. & Frey, E. Elasticity of stiff polymer networks. Phys. Rev. Lett. 91, 108103 (2003).

    Article  ADS  Google Scholar 

  12. Head, D. A., Levine, A. J. & MacKintosh, F. C. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68, 061907 (2003).

    Article  ADS  Google Scholar 

  13. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  ADS  Google Scholar 

  14. Wong, G. C. et al. Lamellar phase of stacked two-dimensional rafts of actin filaments. Phys. Rev. Lett. 91, 018103 (2003).

    Article  ADS  Google Scholar 

  15. Wagner, B., Tharmann, R., Haase, I., Fischer, M. & Bausch, A. R. Cytoskeletal polymer networks: The molecule structure of cross-linkers determines macroscopic properties. Proc. Natl Acad. Sci. USA 103, 13974–13978 (2006).

    Article  ADS  Google Scholar 

  16. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers 1st edn (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  17. Golubovic, L. & Lubensky, T. C. Nonlinear elasticity of amorphous solids. Phys. Rev. Lett. 63, 1082–1085 (1989).

    Article  ADS  Google Scholar 

  18. Warner, M., Blandon, P. & Terentjev, E. M. Soft elasticity—Deformation without resistance in liquid-crystal elastomers. J. Phys. II (France) 4, 93–102 (1994).

    Article  Google Scholar 

  19. Olmsted, P. D. Rotational invariance and Goldstone modes in nematic elastomers and gels. J. Phys. II (France) 4, 2215–2230 (1994).

    Article  Google Scholar 

  20. Lubensky, T. C., Mukhopadhyay, R., Radzihovsky, L. & Xing, X. Symmetries and elasticity of nematic gels. Phys. Rev. E 66, 0112095 (2002).

    Google Scholar 

  21. Discher, D. E., Boal, D. H. & Boey, S. K. Phase transitions and anisotropic responses of planar triangular nets under large deformation. Phys. Rev. E 55, 4762–4772 (1997).

    Article  ADS  Google Scholar 

  22. Boey, S. K., Boal, D. H. & Discher, D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys. J. 75, 1573–1583 (1998).

    Article  Google Scholar 

  23. Boal, D. H. Computer-simulation of a model network for the erythrocyte cytoskeleton. Biophys. J. 67, 521–529 (1994).

    Article  ADS  Google Scholar 

  24. Tolomeo, J. A., Steele, C. R. & Holley, M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys. J. 71, 421–429 (1996).

    Article  Google Scholar 

  25. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  Google Scholar 

  26. Otomo, T. et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488–494 (2005).

    Article  ADS  Google Scholar 

  27. Bates, M. A. & Frenkel, D. Phase behavior of two-dimensional hard rod fluids. J. Chem. Phys. 112, 10034–10041 (2000).

    Article  ADS  Google Scholar 

  28. Carlsson, A. E. Structure of autocatalytically branched actin solutions. Phys. Rev. Lett. 92, 238102 (2004).

    Article  ADS  Google Scholar 

  29. Carlsson, A. E. The effect of branching on the critical concentration and average filament length of actin. Biophys. J. 89, 130–140 (2005).

    Article  ADS  Google Scholar 

  30. Lee, J. C.-M. & Discher, D. E. Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys. J. 81, 3178–3192 (2001).

    Article  Google Scholar 

  31. Picart, C., Dalhaimer, P. & Discher, D. E. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton. Biophys. J. 79, 2987–3000 (2000).

    Article  Google Scholar 

  32. Kosterlitz, J. M. & Thouless, D. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  33. Amann, K. J. & Pollard, T. D. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc. Natl Acad. Sci. USA 98, 15009–15013 (2001).

    Article  ADS  Google Scholar 

  34. Noguchi, H. & Gompper, G. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. USA 102, 14159–14164 (2005).

    Article  ADS  Google Scholar 

  35. Picart, C. & Discher, D. E. Actin protofilament orientation at the erythrocyte membrane. Biophys. J. 77, 865–878 (1999).

    Article  ADS  Google Scholar 

  36. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  ADS  Google Scholar 

  37. Disch, S., Schmidt, C. & Finkelmann, H. Nematic elastomers beyond the critical point. Macromol. Rapid. Commun. 15, 303–310 (1994).

    Article  Google Scholar 

  38. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  ADS  Google Scholar 

  39. Holley, M. C. & Ashmore, J. F. Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair-cells. J. Cell Sci. 96, 283–291 (1990).

    Google Scholar 

Download references

Acknowledgements

Support from Penn’s NSF-MRSEC and from NIH and NSF grants is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

P.D., D.E.D. and T.C.L. designed the research problem and wrote the manuscript; P.D. wrote and conducted the simulations.

Corresponding authors

Correspondence to Dennis E. Discher or Tom C. Lubensky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhaimer, P., Discher, D. & Lubensky, T. Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity. Nature Phys 3, 354–360 (2007). https://doi.org/10.1038/nphys567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing