Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical detection of spin transport in lateral ferromagnet–semiconductor devices

Abstract

The development of semiconductor spintronics requires a reliable electronic means for writing, processing and reading information using spin-polarized carriers. Here, we demonstrate a fully electrical scheme for achieving spin injection, transport and detection in a single device. Our device consists of a lateral semiconducting channel with two ferromagnetic contacts, one of which serves as a source of spin-polarized electrons and the other as a detector. Spin detection in the device is achieved through a non-local, spin-sensitive, Schottky-tunnel-barrier contact whose electrochemical potential depends on the relative magnetizations of the source and detector. We verify the effectiveness of this approach by showing that a transverse magnetic field suppresses the non-local signal at the detection contact by inducing spin precession and dephasing in the channel (the Hanle effect). The sign of the signal varies with the injection current and is correlated with the spin polarization in the channel as determined by optical Kerr rotation measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the experiment and representative non-local spin-valve and Hanle effects.
Figure 2: Hanle curves at different temperatures.
Figure 3: Dependence of the non-local signal on contact separation.
Figure 4: Bias dependence of the non-local signal and the spin polarization.

Similar content being viewed by others

References

  1. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  2. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    Article  ADS  Google Scholar 

  3. Osipov, V. V. & Bratkovsky, A. M. A class of spin injection-precession ultrafast nanodevices. Appl. Phys. Lett. 84, 2118–2120 (2004).

    Article  ADS  Google Scholar 

  4. Dery, H., Cywiński, Ł. & Sham, L. J. Spin transference and magnetoresistance amplification in a transistor. Phys. Rev. B 73, 161307 (2006).

    Article  ADS  Google Scholar 

  5. Zhu, H. J. et al. Room temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  ADS  Google Scholar 

  6. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002).

    Article  ADS  Google Scholar 

  7. Motsnyi, V. F. et al. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl. Phys. Lett. 81, 265–267 (2002).

    Article  ADS  Google Scholar 

  8. Hanbicki, A. T. et al. Analysis of the transport process providing spin injection through an Fe/AlGaAs Schottky barrier. Appl. Phys. Lett. 82, 4092–4094 (2003).

    Article  ADS  Google Scholar 

  9. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  ADS  Google Scholar 

  10. Adelmann, C., Lou, X., Strand, J., Palmstrøm, C. J. & Crowell, P. A. Spin injection and relaxation in ferromagnet-semiconductor heterostructures. Phys. Rev. B 71, 121301 (2005).

    Article  ADS  Google Scholar 

  11. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  ADS  Google Scholar 

  12. Johnson, M. & Silsbee, R. H. Spin-injection experiment. Phys. Rev. B 37, 5326–5335 (1988).

    Article  ADS  Google Scholar 

  13. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  ADS  Google Scholar 

  14. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  ADS  Google Scholar 

  15. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  ADS  Google Scholar 

  16. Lou, X. et al. Electrical detection of spin accumulation at a ferromagnet-semiconductor interface. Phys. Rev. Lett. 96, 176603 (2006).

    Article  ADS  Google Scholar 

  17. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Article  ADS  Google Scholar 

  18. Rashba, E. I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article  ADS  Google Scholar 

  19. Tang, H. X. et al. in Semiconductor Spintronics and Quantum Computation (eds Awschalom, D. D., Loss, D. & Samarth, N.) 31–87 (Springer, Berlin, 2002).

    Book  Google Scholar 

  20. Hammar, P. R., Bennett, B. R., Yang, M. J. & Johnson, M. Observation of spin injection at a ferromagnet-semiconductor interface. Phys. Rev. Lett. 83, 203–206 (1999).

    Article  ADS  Google Scholar 

  21. Hammar, P. R. & Johnson, M. Detection of spin-polarized electrons injected into a two-dimensional electron gas. Phys. Rev. Lett. 88, 066806 (2002).

    Article  ADS  Google Scholar 

  22. Saha, D., Holub, M., Bhattacharya, P. & Liao, Y. C. Epitaxially grown MnAs/GaAs lateral spin valves. Appl. Phys. Lett. 89, 142504 (2006).

    Article  ADS  Google Scholar 

  23. Soulen, R. J. Jr et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

    Article  ADS  Google Scholar 

  24. Stephens, J. et al. Spin accumulation in forward-biased MnAs/GaAs Schottky diodes. Phys. Rev. Lett. 93, 097602 (2004).

    Article  ADS  Google Scholar 

  25. Ciuti, C., McGuire, J. P. & Sham, L. J. Spin polarization of semiconductor carriers by reflection off a ferromagnet. Phys. Rev. Lett. 89, 156601 (2002).

    Article  ADS  Google Scholar 

  26. Strand, J. et al. Electron spin dynamics and hyperfine interactions in Fe/Al0.1Ga0.9As/GaAs spin injection heterostructures. Phys. Rev. B 72, 155308 (2005).

    Article  ADS  Google Scholar 

  27. Moser, J. et al. Bias dependent inversion of tunneling magnetoresistance in Fe/GaAs/Fe tunnel junctions. Appl. Phys. Lett. 89, 162106 (2006).

    Article  ADS  Google Scholar 

  28. Butler, W. H., Zhang, X.-G., Wang, X., van Ek, J. & MacLaren, J. M. Electronic structure of FM|semiconductor|FM spin tunneling structures. J. Appl. Phys. 81, 5518–5520 (1997).

    Article  ADS  Google Scholar 

  29. Freyss, M., Papanikolaou, N., Bellini, V., Zeller, R. & Dederichs, P. H. Electronic structure of Fe/semiconductor/Fe(001) tunnel junctions. Phys. Rev. B 66, 014445 (2002).

    Article  ADS  Google Scholar 

  30. Erwin, S. C., Lee, S.-H. & Scheffler, M. First-principles study of nucleation, growth, and interface structure of Fe/GaAs. Phys. Rev. B 65, 205422 (2002).

    Article  ADS  Google Scholar 

  31. Davis, A. H. & MacLaren, J. M. Spin dependent tunneling at finite bias. J. Appl. Phys. 87, 5224–5226 (2000).

    Article  ADS  Google Scholar 

  32. Valenzuela, S. O., Monsma, D. J., Marcus, C. M., Narayanamurti, V. & Tinkham, M. Spin polarized tunneling at finite bias. Phys. Rev. Lett. 94, 196601 (2005).

    Article  ADS  Google Scholar 

  33. Dery, H. & Sham, L. J. Spin extraction theory and its relevance to spintronics. Phys. Rev. Lett. 98, 046602 (2007).

    Article  ADS  Google Scholar 

  34. Furis, M., Smith, D. L., Crooker, S. A. & Reno, J. L. Bias-dependent electron spin lifetimes in n-GaAs and the role of donor impact ionization. Appl. Phys. Lett. 89, 102102 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. D. Schultz and K. Raach for assistance and E. D. Dahlberg for useful discussions. This work was supported by the Office of Naval Research, the National Science Foundation MRSEC, NNIN and IGERT Programs and the Los Alamos LDRD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Crowell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, X., Adelmann, C., Crooker, S. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys 3, 197–202 (2007). https://doi.org/10.1038/nphys543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing