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The properties of condensed matter are determined by
single-particle and collective excitations and their mutual
interactions. These quantum-mechanical excitations are
characterized by an energy, E, and a momentum, h̄k, which
are related through their dispersion, Ek. The coupling of
excitations may lead to abrupt changes (kinks) in the slope of
the dispersion. Kinks thus carry important information about
the internal degrees of freedom of a many-body system and their
effective interaction. Here, we report a novel, purely electronic
mechanism leading to kinks, which is not related to any coupling
of excitations. Namely, kinks are predicted for any strongly
correlated metal whose spectral function shows a three-peak
structure with well-separated Hubbard subbands and a central
peak, as observed, for example, in transition-metal oxides.
These kinks can appear at energies as high as a few hundred
millielectron volts, as found in recent spectroscopy experiments
on high-temperature superconductors1–4 and other transition-
metal oxides5–8. Our theory determines not only the position of
the kinks but also the range of validity of Fermi-liquid theory.

In systems with strong electron–phonon coupling, kinks in the
electronic dispersion at 40–60 meV below the Fermi level are well
known9–11. Therefore, the kinks that are detected at 40–70 meV
in the electronic dispersion of high-temperature superconductors
are taken as evidence of phonon-12,13 or spin-fluctuation-based14,15

pairing mechanisms. Collective excitations other than phonons,
or even an altogether different mechanism, may be the origin of
kinks detected at 40 meV in the dispersion of surface states of
Ni(110) (ref. 16). Surface states of ferromagnetic Fe(110) show
similar kinks at 100–200 meV (ref. 17), and even at 300 meV
in Pt(110)—far beyond any phononic energy scale18. Kinks
at unusually high energies are also found in transition-metal
oxides5–8,19,20, for example, at 150 meV in SrVO3 (ref. 7), where the
Coulomb interaction leads to strong correlations. Very recently,
kinks were reported at 380 and 800 meV for three different families
of high-temperature superconductors1–4 and at 400–900 meV
in graphene21.

Interactions between electrons or their coupling to other
degrees of freedom change the interpretation of Ek as the energy of
an excitation with infinite lifetime. Namely, the interactions lead to
a damping effect implying that the dispersion relation is no longer a

real function. For systems with Coulomb interaction, Fermi-liquid
(FL) theory predicts the existence of fermionic quasiparticles22, that
is, exact one-particle states with momentum k and a real dispersion
Ek, at the Fermi surface and at zero temperature. This concept can
be extended to k states sufficiently close to the Fermi surface (low-
energy regime) and at low enough temperatures, in which case the
lifetime is now finite but still long enough for quasiparticles to be
used as a concept.

Outside the FL regime, the notion of dispersive quasiparticles is,
in principle, inapplicable as the lifetime of excitations is too short.
However, it is an experimental fact that k-resolved one-particle
spectral functions measured by angle-resolved photoemission
spectroscopy often show distinct peaks also at energies far
away from the Fermi surface1–20. The positions of those peaks
change with k, which means that the corresponding one-particle
excitations are dispersive, in spite of their rather short lifetime. It
turns out that kinks in the dispersion relation are found in this
energy region, which is located outside the FL regime.

We describe a novel mechanism leading to kinks in the
dispersion of strongly correlated electrons, which does not require
any coupling to phonons or other excitations, and which can occur
at any energy inside the band. We begin with a discussion of
the physics of this microscopic mechanism, which applies to a
wide range of correlated metals. Consider first a weakly correlated
system and imagine that we inject an electron into the partially
filled band at an energy close to the Fermi surface. In this process
the entire system becomes excited, leading to the generation of
many quasiparticles and quasiholes. In view of their long lifetime,
the Coulomb interaction with other quasiparticles or quasiholes
modifies their dispersion which, according to FL theory, becomes
Ek = ZFLεk. Here, ZFL is an FL renormalization factor and εk

is the bare (non-interacting) dispersion. In contrast, an electron
injected at an energy far from the Fermi level leads to excitations
with only a short lifetime; their dispersion is hardly affected by
the weak interaction, that is, Ek ≈ εk (see the Supplementary
Information). The crossover from the FL dispersion to the non-
interacting dispersion can lead to kinks near the band edges, which
mark the termination point of the FL regime. However, for weakly
correlated metals (ZFL ∼< 1), the slope of Ek changes only a little;
hence the kinks are not very pronounced.
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Figure 1 Kinks in the dispersion relation, Ek, for a strongly correlated system. The intensity plot represents the spectral function A (k,ω ) (Hubbard model in DMFT,
cubic lattice, interaction U= 3.5 eV, bandwidth W= 3.46 eV, n= 1, ZFL = 0.086, T= 5 K). Close to the Fermi energy, the effective dispersion (white circles) follows the
renormalized band structure, Ek = ZFLεk (blue line). For |ω| > ω� , the dispersion has the same shape but with a different renormalization, Ek = ZCPεk− c sgn(Ek ) (pink
line). Here, ω� = 0.03 eV, ZCP = 0.135 and c= 0.018 eV are all calculated (see the Supplementary Information) from ZFL and εk (black line). A subinterval of �–R (white
frame) is plotted on the right, showing kinks at ±ω� (arrows).

The situation is very different in strongly correlated
metals, where ZFL can be quite small such that kinks can be
well pronounced. The strong interaction produces a strong
redistribution of the spectral weight in the one-particle spectral
function. Namely, the conduction band develops so-called
Hubbard subbands, whose positions are determined by the
atomic energies. For metallic systems, a resonant central peak
emerges around the Fermi level that lies between these subbands.
The central peak of this so-called three-peak structure is often
interpreted as a ‘quasiparticle peak’, but it will be shown below
that genuine FL quasiparticles exist only in a narrow energy
range around the Fermi level. Outside this FL regime, but still
inside the central peak, we identify a new intermediate-energy
regime, where the dispersion is given by Ek ≈ ZCPεk. Here, ZCP is
a new renormalization factor, given by the weight of the central
peak, which differs significantly from ZFL. At these intermediate
energies, which are much smaller than the interaction strength,
an injected electron or hole is still substantially affected by the
other electrons in the system. Therefore, its dispersion is neither
that of a free system, nor that of the (strongly renormalized)
FL regime, but rather corresponds to a moderately correlated
system (ZFL < ZCP < 1). As a consequence, a crossover occurs
at an intermediate energy ±ω� inside the central peak from ZFL

renormalization to ZCP renormalization, which is visible as kinks in
the dispersion. These observations apply to any correlated metal. As
shown below, in a microscopic theory the position of those kinks
are located at the termination point of the FL regime. We emphasize
that this mechanism yields kinks but does not involve coupling of
electrons and collective modes; only strong correlations between
electrons are required.

For a microscopic description of these electronic kinks,
we use the Hubbard model, which is the generic model

for strongly correlated electrons, and solve it by many-body
dynamical mean-field theory23–26 (DMFT), using the numerical
renormalization group as an impurity solver. DMFT is known to
provide the correct behaviour of local observables in the limit
of large coordination numbers, and is used here to quantitatively
support the physical mechanism discussed above. We focus on
a single band with particle–hole symmetry and discuss the
asymmetric case in the Supplementary Information. For the
strongly correlated Hubbard model (interaction U ≈ bandwidth),
the dispersion relation is shown in Fig. 1 and the spectral function is
shown in Fig. 2a. The dispersion relation, Ek, crosses over from the
FL regime (blue line in Fig. 1) to the intermediate-energy regime
(pink line in Fig. 1), as described above, and shows pronounced
kinks at the energy scale ω� = 0.03 eV. In some directions in the
Brillouin zone these kinks may be less visible because the band
structure is flat (for example, near the X point in Fig. 1). The
behaviour of Ek is now analysed quantitatively.

The physical quantity describing properties of one-particle
excitations in a many-body system is the Green function
or ‘propagator’ G(k, ω) = (ω + μ − εk − Σ (k, ω))−1, which
characterizes the propagation of an electron in the solid22. Here ω is
the frequency, μ is the chemical potential, εk is the bare dispersion
relation and Σ (k, ω) is the self-energy, a generally complex
quantity describing the influence of interactions on the propagation
of the one-particle excitation, which vanishes in a non-interacting
system. The effective dispersion relation, Ek, of the one-particle
excitation is determined by the singularities of G(k,ω), which give
rise to peaks in the spectral function A(k,ω) = −Im G(k,ω)/π.
If the damping given by the imaginary part of Σ (k, ω) is
not too large, the effective dispersion is thus determined by
Ek +μ−εk −Re Σ (k,Ek)=0. Any kinks in Ek that do not originate
from εk must therefore be due to slope changes in Re Σ (k,ω).
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In many three-dimensional physical systems, the k dependence
of the self-energy is less important than the ω dependence
and can be neglected to a good approximation. Then, the
DMFT self-consistency equations can be used to express
Σ (k, ω) = Σ (ω) as Σ (ω) = ω + μ − 1/G(ω) − Δ(G(ω)),
where G(ω) = ∫

G(k,ω) dk is the local Green function (averaged
over k) and Δ(G) is an energy-dependent hybridization function,
expressed here as a function of G(ω). In DMFT, Δ(G) is
determined by the requirement G(ω) = G0(ω + μ − Σ (ω)),
that is, G0(Δ(G) + 1/G) = G. Here, G0(ω) is the local Green
function in the absence of interactions. The hybridization
function describes how the electron at a given lattice site is
quantum-mechanically coupled to the other sites in the system.
It plays the role of a dynamical mean-field parameter and its
behaviour is strongly dependent on the electronic correlations
in the system. Figure 2a shows a typical result for the integrated
spectral function A(ω) = −Im G(ω)/π with the aforementioned
three-peak structure. The corresponding real parts of the local
propagator, G(ω), and self-energy, Σ (ω), are shown in Fig. 2b
and c, respectively.

Kinks in Re Σ (ω) appear at a new small energy scale that
emerges quite generally for a three-peak spectral function A(ω).
Kramers–Kronig relations imply that Re [G(ω)] is small near the
dips of A(ω), located at ±Ω . Therefore, Re [G(ω)] has a maximum
and a minimum at ±ωmax inside the central spectral peak
(Fig. 2b). This directly leads to kinks in Re Σ (ω) for the following
reason. There are two contributions to Σ (ω): ω + μ − 1/G(ω)
and −Δ(G(ω)). The first contribution Re [ω + μ − 1/G(ω)]
is linear in the large energy window |ω| < Ω (Fig. 2d); this
is due to Kramers–Kronig relations (see the Supplementary
Information) and is not particular to DMFT. On the other
hand, the term −Re [Δ(G(ω))] is approximately proportional
to −Re [G(ω)] (at least to first order in a moment expansion),
and thus remains linear only in a much narrower energy
window |ω| < ωmax. The sum of these two contributions produces
pronounced kinks in the real part of the self-energy at ±ω�,
where ω� = (

√
2 − 1)ωmax is the energy where Re [G(ω)] has

maximum curvature (marked by blue circles in Fig. 2c). The FL
regime with slope ∂ Re Σ (ω)/∂ω|ω=0 = 1 − 1/ZFL thus extends
only throughout a small part of the central peak (|ω| < ω�). At
intermediate energies (ω� < |ω| < Ω), the slope is then given
by ∂ Re Σ (ω)/∂ω|ω=0 = 1 − 1/ZCP. The kinks at ±ω� mark the
crossover between these two slopes. As a consequence there is also
a kink at ω� in the effective band structure Ek.

The above analysis also explains why outside the FL regime
Ek still follows the uncorrelated dispersion, albeit with a different
renormalization ZCP and a small offset c. This behaviour is
due to ω + μ − 1/G(ω), the main contribution to the self-
energy inside the central peak for ω� < |ω| < Ω . In particular,
our analysis explains the dependence of Ek on k that was
observed in previous DMFT studies of SrVO3 (ref. 27; see the
Supplementary Information).

The FL regime terminates at the kink energy scale ω�, which
cannot be determined within FL theory itself. The quantities
ω�, ZCP and c can nevertheless all be expressed in terms of
ZFL and the bare density of states alone; explicitly, we find
ω� = ZFL(

√
2 − 1)D, where D is an energy scale of the non-

interacting system, for example, D is approximately given by half
the bandwidth (see the Supplementary Information for details). For
weak correlations (ZFL ∼< 1), the kinks in Ek thus merge with the
band edges and are almost undetectable, as discussed above. On
the other hand, for increasingly stronger correlations (ZFL � 1),
the kinks at ω�/D ∝ ZFL move closer to the Fermi energy and
deeper inside the central peak, whose width diminishes only as
Ω/D ∝ √

ZFL (ref. 28).
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Figure 2 Local propagator and self-energy for a strongly correlated system.
The parameters are the same as those in Fig. 1. a, Correlation-induced three-peak
spectral function A(ω ) = −ImG(ω )/π with dips at ±Ω = 0.45 eV.
b, Corresponding real part of the propagator, −Re G(ω ), with minimum and
maximum at ±ωmax inside the central spectral peak. c, Real part of the self-energy
with kinks at ±ω� (blue circles), located at the points of maximum curvature of
Re G(ω ), (ω� = 0.4ωmax = 0.03 eV). d, ω−1/G(ω ) contributes to the self-energy.
In general Re [ω−1/G(ω )] (blue line) is linear in |ω| < Ω . The other contribution
to the self-energy is −Δ(G(ω )) ≈ −(m2 −m2

1 )G(ω ) (to lowest order in the
moments mi of εk; here m2 −m2

1 = 0.5 eV2). Therefore, the nonlinearity of
−Re [G(ω )] at ±ω� determines the location of kinks.

The energy scale ω� involves only the bare band
structure, which can be obtained, for example, from
band-structure calculations, and the FL renormalization
ZFL = 1/(1 − ∂ Re Σ (ω)/∂ω)|ω=0 ≡ m/m∗ known from, for
example, specific-heat measurements or many-body calculations.
We note that because phonons are not involved in this mechanism,
ω� shows no isotope effect. For strongly interacting systems, in
particular close to a metal–insulator transition26, ω� can become
quite small, for example, smaller than the Debye energy.

The mechanism discussed here applies to systems with partially
occupied d or f orbitals, where the local interaction is strong.
An analysis similar to the one presented above also holds for
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systems with strong hybridization such as the high-temperature
superconductors, where the overlap between d and oxygen p
states is important. The assumption of a k-independent self-energy
may also be relaxed: if a correlation-induced three-peak spectral
function, A(k,ω), is present for a certain range of momenta, k,
the corresponding self-energies, Σ (k,ω), and effective dispersion,
Ek, will also develop kinks, as can be proved formally using cluster
extensions to DMFT. Kinks in the dispersion are thus a robust
many-body feature of correlated metals with a three-peak spectral
function, independent of the computational approach.

The energy of electronic kinks is a quantitative measure of
electronic correlations in many-body systems; they mark the
termination point of the FL regime and can be as high as
several hundred millielectron volts. Angle-resolved photoemission
spectroscopy experiments at such high binding energies can thus
provide new, previously unexpected information about strongly
correlated electronic systems. Electronic kinks are a fingerprint of a
strongly correlated metal and are expected to be observable in many
materials, including high-temperature superconductors.
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