Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges for semiconductor spintronics

Abstract

High-volume information-processing and communications devices are at present based on semiconductor devices, whereas information-storage devices rely on multilayers of magnetic metals and insulators. Switching within information-processing devices is performed by the controlled motion of small pools of charge, whereas in the magnetic storage devices information storage and retrieval is performed by reorienting magnetic domains (although charge motion is often used for the final stage of readout). Semiconductor spintronics offers a possible direction towards the development of hybrid devices that could perform all three of these operations, logic, communications and storage, within the same materials technology. By taking advantage of spin coherence it also may sidestep some limitations on information manipulation previously thought to be fundamental. This article focuses on advances towards these goals in the past decade, during which experimental progress has been extraordinary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of key experimental discoveries since 1994 in semiconductor spintronics.
Figure 2: Electrical reorientation of magnetic domains in metals and semiconductors.
Figure 3: Spin transport through non-magnetic semiconductors and metals.
Figure 4: Schematic structure of a MOSFET (left) and a spin-FET (right).

Similar content being viewed by others

References

  1. Ziese, M. & Thornton, M. J. (eds) Spin Electronics (Lecture Notes in Physics series, Vol. 569, Springer-Verlag, Heidelberg, 2001).

    Book  Google Scholar 

  2. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  ADS  Google Scholar 

  3. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  ADS  Google Scholar 

  4. Dieny, B. Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

    Article  ADS  Google Scholar 

  5. Mott, N. F. The electrical conductivity of transition metals. Proc. R. Soc. Lond. A 153, 699–717 (1936).

    Article  ADS  Google Scholar 

  6. Camley, R. E. & Barnaś, J. Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling. Phys. Rev. Lett. 63, 664–667 (1989).

    Article  ADS  Google Scholar 

  7. Barnaś, J., Fuss, A., Camley, R. E., Grünberg, P. & Zinn, W. Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. Phys. Rev. B 42, 8110–8120 (1990).

    Article  ADS  Google Scholar 

  8. Barthélémy, A. & Fert, A. Theory of the magnetoresistance in magnetic multilayers: Analytical expressions from a semiclassical approach. Phys. Rev. B 43, 13124–13129 (1991).

    Article  ADS  Google Scholar 

  9. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

    Article  ADS  Google Scholar 

  10. Butler, W. H. et al. Conductance and giant magnetoconductance of Co|Cu|Co spin valves: Experiment and theory. Phys. Rev. B 56, 14574–14582 (1997).

    Article  ADS  Google Scholar 

  11. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  ADS  Google Scholar 

  12. Johnson, M. & Silsbee, R. H. Spin-injection experiment. Phys. Rev. B 37, 5326–5335 (1988).

    Article  ADS  Google Scholar 

  13. Schultz, S. & Latham, C. Observation of electron spin resonance in copper. Phys. Rev. Lett. 15, 148–151 (1965).

    Article  ADS  Google Scholar 

  14. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  ADS  Google Scholar 

  15. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  ADS  Google Scholar 

  16. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  ADS  Google Scholar 

  17. Kikkawa, J. M., Smorchkova, I. P., Samarth, N. & Awschalom, D. D. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997).

    Article  Google Scholar 

  18. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  Google Scholar 

  19. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  ADS  Google Scholar 

  20. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  21. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002).

    Article  ADS  Google Scholar 

  22. Motsnyi, V. F. et al. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl. Phys. Lett. 81, 265–267 (2002).

    Article  ADS  Google Scholar 

  23. Adelmann, C., Lou, X., Strand, J., Palmstrøm, C. J. & Crowell, P. A. Spin injection and relaxation in ferromagnet-semiconductor heterostructures. Phys. Rev. B 71, 121301(R) (2005).

    Article  ADS  Google Scholar 

  24. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  ADS  Google Scholar 

  25. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  ADS  Google Scholar 

  26. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  ADS  Google Scholar 

  27. Aronov, A. G. & Pikus, G. E. Spin injection into semiconductors. Fiz. Tekh. Poluprovodn. 10, 1177–1179 (1976); Sov. Phys. Semicond. 10, 698–700 (1976).

    Google Scholar 

  28. Flatté, M. E. & Byers, J. M. Spin diffusion in semiconductors. Phys. Rev. Lett. 84, 4220–4223 (2000).

    Article  ADS  Google Scholar 

  29. Yu, Z. G. & Flatté, M. E. Electric-field dependent spin diffusion and spin injection into semiconductors. Phys. Rev. B 66, 201202 (2002).

    Article  ADS  Google Scholar 

  30. Yu, Z. G. & Flatté, M. E. Spin diffusion and injection in semiconductor structures: Electric field effects. Phys. Rev. B 66, 235302 (2002).

    Article  ADS  Google Scholar 

  31. Awschalom, D. D., Samarth, N. & Loss, D. (eds). Semiconductor Spintronics and Quantum Computation (Springer, Heidelberg, 2002).

    Book  Google Scholar 

  32. Qi, Y. & Zhang, S. Spin diffusion at finite electric and magnetic fields. Phys. Rev. B 67, 052407 (2003).

    Article  ADS  Google Scholar 

  33. Meier, F. & Zachachrenya, B. P. Optical Orientation (Modern Problems in Condensed Matter Science series, Vol. 8, North-Holland, Amsterdam, 1984).

    Google Scholar 

  34. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004).

    Article  ADS  Google Scholar 

  35. Yamanouchi, M., Chiba, D., Matsukura, F. and Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  ADS  Google Scholar 

  36. D'yakonov, M. I. & Perel', V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  ADS  Google Scholar 

  37. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  38. Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  ADS  Google Scholar 

  39. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  40. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  41. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005).

    Article  ADS  Google Scholar 

  42. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  43. Stern, N. P. et al. Current-induced polarization and the spin Hall effect at room temperature. Phys. Rev. Lett. 97, 126603 (2006).

    Article  ADS  Google Scholar 

  44. Sih, V. et al. Generating spin currents in semiconductors with the spin Hall effect. Phys. Rev. Lett. 97, 096605 (2006).

    Article  ADS  Google Scholar 

  45. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Preprint at http://arxiv.org/cond-mat/0610433 (2006).

  46. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  ADS  Google Scholar 

  47. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  ADS  Google Scholar 

  48. Tang, J.-M., Levy, J. & Flatté, M. E. All-electrical control of single ion spins in a semiconductor. Phys. Rev. Lett. 97, 106803 (2006).

    Article  ADS  Google Scholar 

  49. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  50. International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, California, USA, 2003); http://public.itrs.net.

  51. Hall, K. C. & Flatté, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503 (2006).

    Article  ADS  Google Scholar 

  52. Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Electron spin interferometry using a semiconductor ring structure. Appl. Phys. Lett. 86, 162107 (2005).

    Article  ADS  Google Scholar 

  53. Engel, H.-A., Halperin, B. I. & Rashba, E. I. Theory of spin Hall conductivity in n-doped GaAs. Phys. Rev. Lett. 95, 166605 (2005).

    Article  ADS  Google Scholar 

  54. Hankiewicz, E. M., Vignale, G. & Flatté, M. E. Spin-Hall effect in a [110] GaAs quantum well. Phys. Rev. Lett. 97, 266601 (2006).

    Article  ADS  Google Scholar 

  55. Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  56. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  Google Scholar 

  57. Flatté, M. E. & Vignale, G. Unipolar spin diodes and transistors. Appl. Phys. Lett. 78, 1273–1275 (2001).

    Article  ADS  Google Scholar 

  58. Flatté, M. E., Yu, Z. G., Johnston-Halperin, E. & Awschalom, D. D. Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 82, 4740–4742 (2003).

    Article  ADS  Google Scholar 

  59. Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).

    Article  ADS  MATH  Google Scholar 

  60. Paget, D., Lampel, G., Sapoval, B. & Safarov, V. I. Low field electron-nuclear spin coupling in gallium arsenide under optical pumping conditions. Phys. Rev. B 15, 5780–5796 (1977).

    Article  ADS  Google Scholar 

  61. Kikkawa, J. M. & Awschalom, D. D. All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000).

    Article  ADS  Google Scholar 

  62. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  63. Kato, Y., Myers, R. C., Gossard, A. C., Levy, J. & Awschalom, D. D. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).

    Article  ADS  Google Scholar 

  64. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  65. Tokura, Y., van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    Article  ADS  Google Scholar 

  66. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    Article  ADS  Google Scholar 

  67. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  68. Leuenberger, M. N., Flatté, M. E. & Awschalom, D. D. Teleportation of electronic many-qubit states via single photons. Phys. Rev. Lett. 94, 107401 (2005).

    Article  ADS  Google Scholar 

  69. D'yakonov, M. I. & Perel', V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1972).

    Google Scholar 

  70. Lau, W. H. & Flatté, M. E. Tunability of electron spin coherence in III-V quantum wells. J. Appl. Phys. 91, 8682–8684 (2002).

    Article  ADS  Google Scholar 

  71. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Article  ADS  Google Scholar 

  72. Rashba, E. I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article  ADS  Google Scholar 

  73. Smith, D. L. & Silver, R. N. Electrical spin injection into semiconductors. Phys. Rev. B 64, 045323 (2001).

    Article  ADS  Google Scholar 

  74. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  ADS  Google Scholar 

  75. Jedema, F. J., Nijboer, M. S., Filip, A. T. & van Wees, B. J. Spin injection and spin accumulation in all-metal mesoscopic spin valves. Phys. Rev. B 67, 085319 (2003).

    Article  ADS  Google Scholar 

  76. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  ADS  Google Scholar 

  77. Koga, T., Sekine, Y. & Nitta, J. Experimental realization of a ballistic spin interferometer based on the Rashba effect using a nanolithographically defined square loop array. Phys. Rev. B 74, 041302 (2006).

    Article  ADS  Google Scholar 

  78. Bergsten, T., Kobayashi, T., Sekine, Y. & Nitta, J. Experimental demonstration of the time reversal Aharonov–Casher effect. Phys. Rev. Lett. 97, 196803 (2006).

    Article  ADS  Google Scholar 

  79. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  80. Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    Article  ADS  Google Scholar 

  81. Silov, A. Yu. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    Article  ADS  Google Scholar 

  82. Rüster, C. et al. Very large magnetoresistance in lateral ferromagnetic (Ga,Mn)As wires with nanoconstrictions. Phys. Rev. Lett. 91, 216602 (2003).

    Article  ADS  Google Scholar 

  83. Chen, P. et al. All-electrical measurement of spin injection in a magnetic p−n junction diode. Preprint at http://arxiv.org/abs/cond-mat/0608453 (2006).

  84. Fabian, J., Žutić, I. & Sarma, S. D. Theory of spin-polarized bipolar transport in magnetic p−n junctions. Phys. Rev. B 66, 165301 (2002).

    Article  ADS  Google Scholar 

  85. Eid, K. F. et al. Exchange biasing of the ferromagnetic semiconductor Ga1–xMnxAs. Appl. Phys. Lett. 85, 1556–1558 (2004).

    Article  ADS  Google Scholar 

  86. Beschoten, B. et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in Ga1–xMnxAs. Phys. Rev. Lett. 83, 3073–3076 (1999).

    Article  ADS  Google Scholar 

  87. Zayets, V., Debnath, M. C. & Ando, K. Complete magneto-optical waveguide mode conversion in Cd1–xMnxTe waveguide on GaAs substrate. Appl. Phys. Lett. 84, 565–567 (2004).

    Article  ADS  Google Scholar 

  88. Onodera, K., Masumoto, T. & Kimura, M. 980 nm compact optical isolators using Cd1–xyMnxHgyTe single crystals for high power pumping laser diodes. Electron. Lett. 30, 1954–1955 (1994).

    Article  Google Scholar 

  89. Shimizu, H. & Nakano, Y. Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation. IEEE J. Lightwave Tech. 24, 38–43 (2006).

    Article  ADS  Google Scholar 

  90. Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup J. & von Borczyskowski, C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  91. Hanson, R., Gywat, O. & Awschalom, D. D. Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203(R) (2006).

    Article  ADS  Google Scholar 

  92. Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    Article  ADS  Google Scholar 

  93. Crooker, S. A. & Smith, D. L. Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields. Phys. Rev. Lett. 94, 236601 (2005).

    Article  ADS  Google Scholar 

  94. Duckheim, M. & Loss, D. Electric-dipole-induced spin resonance in disordered semiconductors. Phys. Rev. Lett. 2, 195–199 (2006).

    Google Scholar 

  95. Hall, K. C., Lau, W. H., Gündoğdu, K., Flatté, M. E. & Boggess, T. F. Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett. 83, 2937–2939 (2003).

    Article  ADS  Google Scholar 

  96. Cartoixa, X., Ting, D. Z.-Y. & Chang, Y.-C. A resonant spin lifetime transistor. Appl. Phys. Lett. 83, 1462–1464 (2003).

    Article  ADS  Google Scholar 

  97. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    Article  ADS  Google Scholar 

  98. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  ADS  Google Scholar 

  99. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  ADS  Google Scholar 

  100. Ghosh, S. et al. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers. Nature Mater. 5, 261–264 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of ONR and DARPA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awschalom, D., Flatté, M. Challenges for semiconductor spintronics. Nature Phys 3, 153–159 (2007). https://doi.org/10.1038/nphys551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing