Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum non-demolition measurement of a superconducting two-level system

Abstract

In quantum mechanics, the process of measurement is a subtle interplay between extraction of information and disturbance of the state of the quantum system. A quantum non-demolition (QND) measurement minimizes this disturbance by using a particular system—detector interaction that preserves the eigenstates of a suitable operator of the quantum system. This leads to an ideal projective measurement. We present experiments in which we carry out two consecutive measurements on a quantum two-level system, a superconducting flux qubit, by probing the hysteretic behaviour of a coupled nonlinear resonator. The large correlation between the results of the two measurements demonstrates the QND nature of the readout method. The fact that a QND measurement is possible for superconducting qubits strengthens the notion that these fabricated mesoscopic systems are to be regarded as fundamental quantum objects. Our results are also relevant for quantum-information processing for protocols such as state preparation and error correction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The flux qubit and the measurement system.
Figure 2: Bistability of the driven nonlinear resonator and qubit-state detection.
Figure 3: Measurement of qubit state.
Figure 4: Correlation measurements of the qubit.

Similar content being viewed by others

References

  1. Braginsky, V. B. & Khalili, F. Ya. Quantum Measurement (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  2. Braginsky, V. B. & Khalili, F. Ya. Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  3. Grangier, P., Levenson, J. A. & Poizat, J. P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    Article  ADS  Google Scholar 

  4. Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

    Article  ADS  Google Scholar 

  5. Geremia, J. M., Stockton, J. K. & Mabuchi, H. Real-time quantum feedback control of atomic spin-squeezing. Science 304, 270–273 (2004).

    Article  ADS  Google Scholar 

  6. Peil, S. & Gabrielse, G. Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states. Phys. Rev. Lett. 83, 1287–1290 (1999).

    Article  ADS  Google Scholar 

  7. Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

    Article  ADS  Google Scholar 

  8. Devoret, M. H., Wallraff, A. & Martinis, J. M. Superconducting qubits: A short review. Preprint at <http://arxiv.org/abs/cond-mat/0411174> (2004).

  9. Yamamoto, T. et al. Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003).

    Article  ADS  Google Scholar 

  10. Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  12. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004).

    Article  ADS  Google Scholar 

  13. Johansson, J. et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006).

    Article  ADS  Google Scholar 

  14. Astafiev, O., Pashkin, Yu. A., Yamamoto, T., Nakamura, Y. & Tsai, J. S. Single-shot measurement of the Josephson charge qubit. Phys. Rev. B 69, 180507(R) (2004).

    Article  ADS  Google Scholar 

  15. Lupaşcu, A., Driessen, E. F. C., Roschier, L., Harmans, C. J. P. M. & Mooij, J. E. High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator. Phys. Rev. Lett. 96, 127003 (2006).

    Article  ADS  Google Scholar 

  16. Steffen, M. et al. State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006).

    Article  ADS  Google Scholar 

  17. Lupaşcu, A., Verwijs, C. J. M., Schouten, R. N., Harmans, C. J. P. M. & Mooij, J. E. Non-destructive readout of a superconducting flux qubit. Phys. Rev. Lett. 93, 177006 (2004).

    Article  ADS  Google Scholar 

  18. Siddiqi, I. et al. Dispersive measurements of superconducting qubit coherence with a fast latching readout. Phys. Rev. B 73, 054510 (2006).

    Article  ADS  Google Scholar 

  19. Mooij, J. E. et al. Josephson persistent-current qubit. Science 307, 1036–1039 (1999).

    Article  Google Scholar 

  20. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    Article  ADS  Google Scholar 

  21. Dykman, M. I. & Krivoglaz, M. A. Fluctuations in nonlinear systems near bifurcations corresponding to the appearance of new stable states. Physica A 104, 480–494 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. Siddiqi, I. et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004).

    Article  ADS  Google Scholar 

  23. Katz, N. et al. Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Devoret, P. Bertet, T. Meunier, G. Nogues and J. M. Raimond for discussions, and R. N. Schouten for his contribution to the measurement system. Financial support was provided by the Dutch Foundation for Fundamental Research on Matter (FOM), the EU projects SQUBIT2 and EuroSQIP and the Dutch National Initiative on Nano Science and Technology NanoNed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lupaşcu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupaşcu, A., Saito, S., Picot, T. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys 3, 119–123 (2007). https://doi.org/10.1038/nphys509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing