Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasiparticle interference and superconducting gap in Ca2−xNaxCuO2Cl2

Abstract

High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes, but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc superconductivity. However, because of the ‘pseudogap’ phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we use scanning tunnelling spectroscopy to image nearly optimally doped Ca2−xNaxCuO2Cl2(Na-CCOC) with Tc=25–28 K. It enables us to observe the quasiparticle interference effect in this material, through which we obtain unambiguous information on the SG. Our analysis of quasiparticle interference in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, despite the Tc of Bi2212 being three times higher than that of Na-CCOC. We also find that the SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212, which explains—at least in part—the remarkable material dependence of Tc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of electronic states responsible for the interference effect of Bogoliubov quasiparticles in the superconducting state.
Figure 2: Spectroscopic features of nearly optimally doped Na-CCOC with Tc25 K (x0.13).
Figure 3: Fourier-transform STS results on Na-CCOC (Tc28 K,x0.14) demonstrating the QPI in the conductance-ratio map Z(r,E)≡g(r,+E)/g(r,−E).
Figure 4: The obtained FS and the SG dispersion for Na-CCOC (Tc28 K,x0.14).

Similar content being viewed by others

References

  1. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  2. Cren, T., Roditchev, D., Sacks, W. & Klein, J. Nanometer scale mapping of the density of states in an inhomogeneous superconductor. Eur. Phys. Lett. 54, 84–90 (2001).

    Article  ADS  Google Scholar 

  3. Howald, C., Fournier, P. & Kapitulnik, A. Inherent inhomogeneities in tunneling spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state. Phys. Rev. B 64, 100504 (2001).

    Article  ADS  Google Scholar 

  4. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 413, 282–285 (2001).

    Article  ADS  Google Scholar 

  5. Lang, K. M. et al. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature 415, 412–416 (2002).

    Article  ADS  Google Scholar 

  6. Kohsaka, Y. et al. Imaging nano-scale electronic inhomogeneity in lightly doped Mott insulator Ca2−xNaxCuO2Cl2 . Phys. Rev. Lett. 93, 097004 (2004).

    Article  ADS  Google Scholar 

  7. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  8. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  ADS  Google Scholar 

  9. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  10. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  ADS  Google Scholar 

  11. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  12. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  13. Yoshida, T. et al. Low-energy electronic structure of the high-Tc cuprates La2−xSrxCuO4 studied by angle-resolved photoemission spectroscopy. J. Phys. Condens. Matter 19, 125209 (2007).

    Article  ADS  Google Scholar 

  14. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

    Article  ADS  Google Scholar 

  15. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  16. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

    Article  ADS  Google Scholar 

  17. Le Tacon, M. et al. Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nature Phys. 2, 537–543 (2006).

    Article  ADS  Google Scholar 

  18. Gomes, K. K. et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Nature 447, 569–572 (2007).

    Article  ADS  Google Scholar 

  19. Boyer, M. C. et al. Imaging the two gaps of the high-Tc superconductor Pb-Bi2Sr2CuO6+x. Nature Phys. published online 16 September 2007 (doi:10.1038/nphys725).

  20. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  21. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  22. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003).

    Article  ADS  Google Scholar 

  23. Wang, Q. & Lee, D.-H. Quasiparticle scattering interference in high temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  24. Zhang, D. & Ting, C. S. Energy-dependent modulations in the local density of states of the cuprate superconductors. Phys. Rev. B 67, 100506 (2003).

    Article  ADS  Google Scholar 

  25. Pereg-Barnea, T. & Franz, M. Theory of quasiparticle interference patterns in the pseudogap phase of the cuprate superconductors. Phys. Rev. B 68, 180506 (R) (2003).

    Article  ADS  Google Scholar 

  26. Capriotti, L., Scalapino, D. J. & Sedgewick, R. D. Wave-vector power spectrum of the local tunneling density of states: Ripples in a d-wave sea. Phys. Rev. B 68, 014508 (2003).

    Article  ADS  Google Scholar 

  27. Zhu, L., Atkinson, W. A. & Hirschfeld, P. J. Power spectrum of many impurities in a d-wave superconductor. Phys. Rev. B 69, 060503(R) (2004).

    Article  ADS  Google Scholar 

  28. Pereg-Barnea, T. & Franz, M. Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors. Int. J. Mod. Phys. B 19, 731–761 (2005).

    Article  ADS  Google Scholar 

  29. Dell’Anna, L., Lorenzana, J., Capone, M., Castellani, C. & Grilli, M. Effect of mesoscopic inhomogeneities on local tunneling density of states in cuprates. Phys. Rev. B 71, 064518 (2005).

    Article  ADS  Google Scholar 

  30. Cheng, M. & Su, W. P. Local density of states and angle-resolved photoemission spectral function of an inhomogeneous d-wave superconductor. Phys. Rev. B 72, 094512 (2005).

    Article  ADS  Google Scholar 

  31. Nunner, T. S. et al. Fourier transform spectroscopy of d-wave quasiparticles in the presence of atomic scale pairing disorder. Phys. Rev. B 73, 104511 (2006).

    Article  ADS  Google Scholar 

  32. Hasegawa, Y. & Avouris, Ph. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).

    Article  ADS  Google Scholar 

  33. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    Article  ADS  Google Scholar 

  34. Sprunger, P. T., Petersen, L., Plummer, E. W., Lægsgaard, E. & Besenbacher, F. Giant Friedel oscillations on the beryllium(0001) surface. Science 275, 1764–1767 (1997).

    Article  Google Scholar 

  35. Tinkham, M. Introduction to Superconductivity 2nd edn, 43 (McGraw Hill, New York, 1996).

    Google Scholar 

  36. Hiroi, Z., Kobayashi, N. & Takano, M. Probable hole-doped superconductivity without apical oxygens in (Ca,Na)2CuO2Cl2 . Nature 371, 139–141 (1994).

    Article  ADS  Google Scholar 

  37. Kohsaka, Y. et al. Growth of Na-doped Ca2CuO2Cl2 single crystals under high pressures of several GPa. J. Am. Chem. Soc. 124, 12275–12278 (2002).

    Article  Google Scholar 

  38. Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

  39. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 314, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  40. Furukawa, N., Rice, T. M. & Salmhofer, M. Truncation of a two-dimensional FS due to quasiparticle gap formation at the saddle points. Phys. Rev. Lett. 81, 3195–3198 (1998).

    Article  ADS  Google Scholar 

  41. Wen, X.-G. & Lee, P. A. Theory of quasiparticles in the underdoped high-Tc superconducting state. Phys. Rev. Lett. 80, 2193–2196 (1998).

    Article  ADS  Google Scholar 

  42. Li, J.-X., Wu, C.-Q. & Lee, D.-H. Checkerboard charge density wave and pseudogap of high-Tc cuprates. Phys. Rev. B 74, 184515 (2006).

    Article  ADS  Google Scholar 

  43. Garg, A., Randeria, M. & Trivedi, N. Strong correlations lead to protected low energy excitations in disordered d-wave superconductors. Preprint at <http://arXiv.org/cond-mat/0609666> (2006).

  44. Oda, M., Dipasupil, R. M., Momono, N. & Ido, M. Hyperbolic dependence of 2Δ0 vs. Tc ratio on hole-doping level in high-Tc cuprates: Energy scale in determining Tc . J. Phys. Soc. Jpn. 69, 983–984 (2000).

    Article  ADS  Google Scholar 

  45. Hanaguri, T. Development of high-field STM and its application to the study on magnetically-tuned criticality in Sr3Ru2O7 . J. Phys. Conf. Ser. 51, 514–521 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A.V. Balatsky, C.-M. Ho, D.-H. Lee, K. Machida, A. Mackenzie, K. McElroy, T. Tohyama, J. Zaanen and F.-C. Zhang for discussions. They also thank J. Matsuno and P. Sharma for critical readings. T.H., M.T. and H.T. are supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. J.C.D. and Y.K. acknowledge support from Brookhaven National Laboratory under contract No DE-AC02-98CH1886 with the US Department of Energy, from the US Department of Energy Award No DE-FG02-06ER46306 and from the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Contributions

T.H. was responsible for all aspects of this project except sample growth. Y.K., J.C.D. and C.L. contributed the project planning and data analysis. I.Y., M.A., M.T. and K.O. grew samples and M.O. contributed the STM measurements. H.T. contributed the project planning and managed the whole project.

Corresponding author

Correspondence to T. Hanaguri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanaguri, T., Kohsaka, Y., Davis, J. et al. Quasiparticle interference and superconducting gap in Ca2−xNaxCuO2Cl2. Nature Phys 3, 865–871 (2007). https://doi.org/10.1038/nphys753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing