Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-sectional imaging of spin injection into a semiconductor

Abstract

Recent discoveries of phenomena that relate electronic transport in solids to the spin angular momentum of the electrons are the fundamentals of spin electronics (spintronics). The first proposed conceptual spintronic device, the spin field-effect transistor—which has not yet been successfully implemented—requires the creation and detection of spin-polarized currents in a semiconductor. Whereas electrical spin injection from a ferromagnetic metal into GaAs has been achieved recently, the detection techniques used up to now have drawbacks like the requirement of large magnetic fields or limited information about the spin polarization in the semiconductor. Here we introduce a method that, by observation across a cleaved edge, enables us to directly visualize fully remanent electrical spin injection into bulk GaAs from a ferromagnetic contact, to image the spin-density distribution in the semiconductor in a cross-sectional view and to separate the effects of spin diffusion and electron drift.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the spin-injection experiment (lateral transport) and basic magnetic behaviour.
Figure 2: Cross-sectional imaging of the injected spin polarization in the lateral-current geometry (all measurements at T=9 K).
Figure 3: Characterization of the injected spin polarization in the vertical-current geometry.

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamental and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  2. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  3. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  ADS  Google Scholar 

  4. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002).

    Article  ADS  Google Scholar 

  5. Adelmann, C., Lou, X., Strand, J., Palmstrøm, C. J. & Crowell, P. A. Spin injection and relaxation in ferromagnet–semiconductor heterostructures. Phys. Rev. B 71, 121301 (2005).

    Article  ADS  Google Scholar 

  6. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  ADS  Google Scholar 

  7. Motsnyi, F. et al. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl. Phys. Lett. 81, 265–267 (2002).

    Article  ADS  Google Scholar 

  8. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO (100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  ADS  Google Scholar 

  9. Adelmann, C. et al. Spin injection from a perpendicular magnetized ferromagnetic δ-MnGa into (Al,Ga)As heterostructures. Appl. Phys. Lett. 89, 112511 (2006).

    Article  ADS  Google Scholar 

  10. Gerhardt, N. C. et al. Electron spin injection into GaAs from ferromagnetic contacts in remanence. Appl. Phys. Lett. 87, 032502 (2005).

    Article  ADS  Google Scholar 

  11. van ’t Erve, O. M. J., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Jonker, B. T. Remanent electrical spin injection from Fe into AlGaAs/GaAs light emitting diodes. Appl. Phys. Lett. 89, 072505 (2006).

    Article  ADS  Google Scholar 

  12. Lou, X. et al. Electrical detection of spin accumulation at a ferromagnet–semiconductor interface. Phys. Rev. Lett. 96, 176603 (2006).

    Article  ADS  Google Scholar 

  13. Padovani, F. A. & Stratton, R. Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 9, 695 (1966).

    Article  ADS  Google Scholar 

  14. Bayreuther, G., Dumm, M., Uhl, B., Meier, R. & Kipferl, W. Magnetocrystalline volume and interface anisotropies in epitaxial films: Universal relation and Néel’s model. J. Appl. Phys. 93, 8230–8235 (2003).

    Article  ADS  Google Scholar 

  15. Yu, Z. G. & Flatté, M. E. Spin diffusion and injection in semiconductor structures: Electric field effects. Phys. Rev. B 66, 235302 (2002).

    Article  ADS  Google Scholar 

  16. Aronov, A. G. & Pikus, G. E. Spin injection into semiconductors. Sov. Phys. Semicond. 10, 698–700 (1976).

    Google Scholar 

  17. Paget, D. & Berkovits, V. L. in Optical Orientation (eds Meier, F. & Zakharchenya, B. P.) Ch. 9, 381–422 (North-Holland, Amsterdam, 1984).

    Book  Google Scholar 

  18. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  Google Scholar 

  19. Dzhioev, R. I. et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

    Article  ADS  Google Scholar 

  20. Ciuti, C., McGuire, J. P. & Sham, L. J. Spin polarization of semiconductor carriers by reflection off a ferromagnet. Phys. Rev. Lett. 89, 156601 (2002).

    Article  ADS  Google Scholar 

  21. Osipov, V. V. & Bratkovsky, A. M. Spin accumulation in degenerate semiconductors near modified Schottky contact with ferromagnets: Spin injection and extraction. Phys. Rev. B 72, 115322 (2005).

    Article  ADS  Google Scholar 

  22. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  ADS  Google Scholar 

  23. Dery, H. & Sham, L. J. Spin extraction theory and its relevance to spintronics. Phys. Rev. Lett. 98, 046602 (2007).

    Article  ADS  Google Scholar 

  24. Bournel, A., Dollfus, P., Bruno, P. & Hesto, P. Spin polarized transport in 1D and 2D semiconductor heterostructures. Mater. Sci. Forum 297–298, 205–212 (1999).

    Google Scholar 

  25. Bournel, A., Dollfus, P., Bruno, P. & Hesto, P. Gate-induced spin precession in an In0.53Ga0.47As two dimensional electron gas. Eur. Phys. J. AP 4, 1–4 (1998).

    Article  ADS  Google Scholar 

  26. Moosbühler, R., Bensch, F., Dumm, M. & Bayreuther, G. Epitaxial Fe films on GaAs(001): Does the substrate surface reconstruction affect the uniaxial magnetic anisotropy? J. Appl. Phys. 91, 8757–8759 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under FOR 370 and SFB 689. We thank B. Muermann and J. Ehehalt for assistance with programming some of the measurement procedures, P. Chen for characterization of the GaAs materials and J. Fabian for discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.K. designed and carried out the experiments, analysed the data and prepared the manuscript; M.B. conceived the main experiment, developed the theoretical data analysis and contributed to the manuscript; M.S. carried out the SQUID measurements and contributed to the manuscript; A.S. carried out part of the sample preparation; D.S. grew the semiconductor materials; W.W. devised the project and contributed materials; C.H.B. provided support for the optical measurements and contributed to the manuscript; G.B. devised the project, contributed to the data analysis and wrote the paper.

Corresponding author

Correspondence to G. Bayreuther.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2 (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotissek, P., Bailleul, M., Sperl, M. et al. Cross-sectional imaging of spin injection into a semiconductor. Nature Phys 3, 872–877 (2007). https://doi.org/10.1038/nphys734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing