Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-organized network evolution coupled to extremal dynamics

Abstract

The interplay between topology and dynamics in complex networks is a fundamental but widely unexplored problem. Here, we study this phenomenon on a prototype model in which the network is shaped by a dynamical variable. We couple the dynamics of the Bak–Sneppen evolution model with the rules of the so-called fitness network model for establishing the topology of a network; each vertex is assigned a ‘fitness’, and the vertex with minimum fitness and its neighbours are updated in each iteration. At the same time, the links between the updated vertices and all other vertices are drawn anew with a fitness-dependent connection probability. We show analytically and numerically that the system self-organizes to a non-trivial state that differs from what is obtained when the two processes are decoupled. A power-law decay of dynamical and topological quantities above a threshold emerges spontaneously, as well as a feedback between different dynamical regimes and the underlying correlation and percolation properties of the network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stationary fitness distribution and threshold.
Figure 2: Cluster size distribution.
Figure 3: Behaviour at the percolation threshold.
Figure 4: Fitness dependence and cumulative distribution of the degrees.

Similar content being viewed by others

References

  1. Caldarelli, G. Complex Webs in Nature and Technology (Oxford Univ. Press, Oxford, 2007).

    MATH  Google Scholar 

  2. Caldarelli, G. & Vespignani, A. (eds) Large Scale Structure and Dynamics of Complex Networks (World Scientific, Singapore, 2007).

  3. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  4. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  5. Garlaschelli, D. & Loffredo, M. I. Fitness-dependent topological properties of the world trade web. Phys. Rev. Lett. 93, 188701 (2004).

    Article  ADS  Google Scholar 

  6. Garlaschelli, D., Battiston, S., Castri, M., Servedio, V. D. P. & Caldarelli, G. The scale-free topology of market investments. Physica A 350, 491–499 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. Balcan, D. & Erzan, A. Content-based networks: A pedagogical overview. Chaos 17, 026108 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  8. Caldarelli, G., Capocci, A., De Los Rios, P. & Muñoz, M. A. Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002).

    Article  ADS  Google Scholar 

  9. Söderberg, B. General formalism for inhomogeneous random graphs. Phys. Rev. E 66, 066121 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436–442 (2001).

    Article  ADS  Google Scholar 

  11. Boguñá, M. & Pastor-Satorras, R. Class of correlated random networks with hidden variables. Phys. Rev. E 68, 036112 (2003).

    Article  ADS  Google Scholar 

  12. Servedio, V. D. P., Caldarelli, G. & Buttà, P. Vertex intrinsic fitness: How to produce arbitrary scale-free networks. Phys. Rev. E 70, 056126 (2004).

    Article  ADS  Google Scholar 

  13. Caldarelli, G., Higgs, P. G. & McKane, A. J. Modelling coevolution in multispecies communities. J. Theor. Biol. 193, 345–358 (1998).

    Article  Google Scholar 

  14. Jain, S. & Krishna, S. Autocatalytic sets and the growth of complexity in an evolutionary model. Phys. Rev. Lett. 81, 5684–5687 (1998).

    Article  ADS  Google Scholar 

  15. Bianconi, G. & Marsili, M. Clogging and self-organized criticality in complex networks. Phys. Rev. E 70, 035105(R) (2004).

    Article  ADS  Google Scholar 

  16. Fronczak, P., Fronczak, A. & Holyst, J. A. Self-organized criticality and coevolution of network structure and dynamics. Phys. Rev. E 73, 046117 (2006).

    Article  ADS  Google Scholar 

  17. Zanette, D. H. & Gil, S. Opinion spreading and agent segregation on evolving networks. Physica D 224, 156–165 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  18. Santos, F. C., Pacheco, J. M. & Lenaerts, T. Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2, e140 (2006).

    Article  ADS  Google Scholar 

  19. Bak, P. & Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993).

    Article  ADS  Google Scholar 

  20. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  ADS  Google Scholar 

  21. De Los Rios, P., Marsili, M. & Vendruscolo, M. High-dimensional Bak–Sneppen model. Phys. Rev. Lett. 80, 5746–5749 (1998).

    Article  ADS  Google Scholar 

  22. Flyvbjerg, H., Sneppen, K. & Bak, P. Mean field theory for a simple model of evolution. Phys. Rev. Lett. 71, 4087–4090 (1993).

    Article  ADS  Google Scholar 

  23. Kulkarni, R. V., Almaas, E. & Stroud, D. Evolutionary dynamics in the Bak–Sneppen model on small-world networks. Preprint at <http://www.arxiv.org/cond-mat/9905066> (1999).

  24. Moreno, Y. & Vazquez, A. The Bak–Sneppen model on scale-free networks. Europhys. Lett. 57, 765–771 (2002).

    Article  ADS  Google Scholar 

  25. Lee, S. & Kim, Y. Coevolutionary dynamics on scale-free networks. Phys. Rev. E 71, 057102 (2005).

    Article  ADS  Google Scholar 

  26. Masuda, N., Goh, K.-I. & Kahng, B. Extremal dynamics on complex networks: Analytic solutions. Phys. Rev. E 72, 066106 (2005).

    Article  ADS  Google Scholar 

  27. Park, J. & Newman, M. E. J. Origin of degree correlations in the Internet and other networks. Phys. Rev. E 68, 026112 (2003).

    Article  ADS  Google Scholar 

  28. Garlaschelli, D. & Loffredo, M. I. Maximum likelihood: Extracting unbiased information from complex networks. Preprint at <http://www.arxiv.org/cond-mat/0609015> (2006).

  29. Maslov, S., Sneppen, K. & Zaliznyak, A. Detection of topological patterns in complex networks: Correlation profile of the Internet. Physica A 333, 529–540 (2004).

    Article  ADS  Google Scholar 

  30. Newman, M. E. J. Handbook of Graphs and Networks: From the Genome to the Internet (Wiley-VCH, New York, 2003).

    Google Scholar 

  31. de Boer, J., Jackson, A. D. & Wettig, T. Criticality in simple models of evolution. Phys. Rev. E 51, 1059–1074 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.C. acknowledges D. Donato for helpful discussions. This work was partly supported by the European Integrated Project DELIS.

Author information

Authors and Affiliations

Authors

Contributions

D.G. developed the theory and carried out computer simulations. A.C. carried out computer simulations. G.C. planned the study and developed the theory.

Corresponding author

Correspondence to Guido Caldarelli.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garlaschelli, D., Capocci, A. & Caldarelli, G. Self-organized network evolution coupled to extremal dynamics. Nature Phys 3, 813–817 (2007). https://doi.org/10.1038/nphys729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing