Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single-photon transistor using nanoscale surface plasmons

Abstract

Photons rarely interact—which makes it challenging to build all-optical devices in which one light signal controls another. Even in nonlinear optical media, in which two beams can interact because of their influence on the medium’s refractive index, this interaction is weak at low light levels. Here, we propose a novel approach to realizing strong nonlinear interactions at the single-photon level, by exploiting the strong coupling between individual optical emitters and propagating surface plasmons confined to a conducting nanowire. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using conventional quantum-optical techniques. Furthermore, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient to allow (or prevent) the propagation of subsequent ‘signal’ photons along the wire.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of single surface plasmons with a single emitter.
Figure 2: Second-order correlation function g(2)(t) for the reflected and transmitted fields at low incident power (Ωc/Γ=0.01).
Figure 3: Schematic diagram of transistor operation involving a three-level emitter.
Figure 4: Schematic diagram of in- and out-coupling of surface plasmons on a tapered nanowire to an evanescently coupled low-loss dielectric waveguide.

Similar content being viewed by others

References

  1. Boyd, R. W. Nonlinear Optics (Academic, New York, 1992).

    Google Scholar 

  2. Gibbs, H. M. Optical Bistability: Controlling Light with Light (Academic, Orlando, 1985).

    Google Scholar 

  3. Bouwmeester, D., Ekert, A. & Zeilinger, A. (eds) The Physics of Quantum Information (Springer, Berlin, 2000).

  4. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  Google Scholar 

  5. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

    Article  Google Scholar 

  6. Harris, S. E. & Yamamoto, Y. Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998).

    Article  ADS  Google Scholar 

  7. Lukin, M. D. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    Article  ADS  Google Scholar 

  8. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  9. Vahala, K. (ed.) Optical Microcavities (World Scientific, Singapore, 2004).

  10. Miller, R. et al. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

    Article  Google Scholar 

  11. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  12. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  13. Waks, E. & Vuckovic, J. Dipole induced transparency in drop filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006).

    Article  ADS  Google Scholar 

  14. Bermel, P., Rodriguez, A., Johnson, S. G., Joannopoulos, J. D. & Soljac˘ić, M. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006).

    Article  ADS  Google Scholar 

  15. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  16. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–63 (2007).

    Article  Google Scholar 

  17. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  18. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, New York, 2006).

    Google Scholar 

  19. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1998).

    Article  ADS  Google Scholar 

  20. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  21. Klimov, V. V., Ducloy, M. & Letokhov, V. S. A model of an apertureless scanning microscope with a prolate nanospheriod as a tip and an excited molecule as an object. Chem. Phys. Lett. 358, 192–198 (2002).

    Article  ADS  Google Scholar 

  22. Smolyaninov, I. I., Elliott, J., Zayats, A. V. & Davis, C. C. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys. Rev. Lett. 94, 057401 (2005).

    Article  ADS  Google Scholar 

  23. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

  24. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  25. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  26. Bellessa, J., Bonnand, C. & Plenet, J. C. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004).

    Article  ADS  Google Scholar 

  27. Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).

    Article  ADS  Google Scholar 

  28. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

    Article  ADS  Google Scholar 

  29. Tong, L., Lou, J. & Mazur, E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12, 1025–1035 (2004).

    Article  ADS  Google Scholar 

  30. Nayak, K. P. et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431–5438 (2007).

    Article  ADS  Google Scholar 

  31. Meystre, P. & Sargent III, M. Elements of Quantum Optics 3rd edn (Springer, New York, 1999).

    Book  Google Scholar 

  32. Shen, J. T. & Fan, S. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005).

    Article  ADS  Google Scholar 

  33. Kojima, K., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field. Phys. Rev. A 68, 013803 (2003).

    Article  ADS  Google Scholar 

  34. Shen, J.-T. & Fan, S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).

    Article  ADS  Google Scholar 

  35. Carmichael, H. J., Brecha, R. J. & Rice, P. R. Quantum interference and collapse of the wavefunction in cavity QED. Opt. Commun. 82, 73–79 (1991).

    Article  ADS  Google Scholar 

  36. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, M. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  37. Gorshkov, A. V., Andre, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

    Article  ADS  Google Scholar 

  38. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  39. Maier, S. A., Friedman, M. D., Barclay, P. E. & Painter, O. Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl. Phys. Lett. 86, 071103 (2005).

    Article  ADS  Google Scholar 

  40. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  ADS  Google Scholar 

  41. Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

    Article  ADS  Google Scholar 

  42. Lesage, F. & Saleur, H. Boundary interaction changing operators and dynamical correlations in quantum impurity problems. Phys. Rev. Lett. 80, 4370–4373 (1998).

    Article  ADS  Google Scholar 

  43. Mollow, B. R. Pure-state analysis of resonant light scattering: Radiative damping, saturation, and multiphoton effects. Phys. Rev. A 12, 1919–1943 (1975).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Akimov, A. Mukherjee, V. Gritsev, M. Loncar and H. Park for useful discussions. This work was supported by the NSF (Career and NIRT programs), Harvard-MIT CUA and the Danish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Sørensen, A., Demler, E. et al. A single-photon transistor using nanoscale surface plasmons. Nature Phys 3, 807–812 (2007). https://doi.org/10.1038/nphys708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing