Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scaling of proton acceleration driven by petawatt-laser–plasma interactions

Abstract

The possibility of using high-power lasers to generate high-quality beams of energetic ions is attracting large global interest. The prospect of using laser-accelerated protons in medicine attracts particular interest, as these schemes may lead to compact and relatively low-cost sources. Among the challenges remaining before these sources can be used in medicine is to increase the numbers and energies of the ions accelerated. Here, we extend the energy and intensity range over which proton scaling is experimentally investigated, up to 400 J and 6×1020 W cm−2 respectively, and find a slower proton scaling than previously predicted. With the aid of plasma-expansion simulation tools, our results suggest the importance of time-dependent and multidimensional effects in predicting the maximum proton energy in this ultrahigh-intensity regime. The implications of our new understanding of proton scaling for potential medical applications are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The laser-accelerated maximum proton energy as a function of laser intensity and pulse duration.
Figure 2: The laser-to-proton energy-conversion efficiency as a function of laser energy and pulse duration.
Figure 3: Proton-induced activation scaling with laser parameters.

Similar content being viewed by others

References

  1. Clark, E. L. et al. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670–673 (2000).

    Article  ADS  Google Scholar 

  2. Snavely, R. A. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

    Article  ADS  Google Scholar 

  3. Wilks, S. C. et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542–549 (2001).

    Article  ADS  Google Scholar 

  4. Hegelich, M. et al. MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (2002).

    Article  ADS  Google Scholar 

  5. McKenna, P. et al. Demonstration of fusion-evaporation and direct-interaction nuclear reactions using high intensity laser-plasma-accelerated ion beams. Phys. Rev. Lett. 91, 075006 (2003).

    Article  ADS  Google Scholar 

  6. McKenna, P. et al. Proton and heavier ion acceleration in ultrahigh intensity laser-interactions with heated target foils. Phys. Rev. E 70, 036405 (2004).

    Article  ADS  Google Scholar 

  7. Cowan, T. et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004).

    Article  ADS  Google Scholar 

  8. Spencer, I. et al. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Instrum. Methods Phys. Res. B 183, 449–458 (2001).

    Article  ADS  Google Scholar 

  9. Fritzler, S. et al. Proton beams generated with high-intensity lasers: Applications to PET isotope production. Appl. Phys. Lett. 83, 3039–3041 (2003).

    Article  ADS  Google Scholar 

  10. Ledingham, K. W. D. et al. High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D 37, 2341–2345 (2004).

    Article  ADS  Google Scholar 

  11. Bulanov, S. V. et al. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240–247 (2002).

    Article  ADS  Google Scholar 

  12. Malka, V. et al. Practicality of proton therapy using compact laser systems. Med. Phys. 31, 1587–1592 (2004).

    Article  Google Scholar 

  13. Borghesi, M. et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 2214–2220 (2002).

    Article  ADS  Google Scholar 

  14. Krushelnick, K. et al. Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 1184–1189 (2000).

    Article  ADS  Google Scholar 

  15. McKenna, P. et al. Broad energy spectrum of laser-accelerated protons for spallation-related physics. Phys. Rev. Lett. 94, 084801 (2005).

    Article  ADS  Google Scholar 

  16. Roth, M. et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001).

    Article  ADS  Google Scholar 

  17. Clark, E. L. et al. Energetic heavy-ion and proton generation from ultra-intense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 1654–1657 (2000).

    Article  ADS  Google Scholar 

  18. Allen, M. et al. Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation. Phys. Plasmas 10, 3283–3289 (2003).

    Article  ADS  Google Scholar 

  19. Fourkal, E., Velchev, I. & Ma, C.-M. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers. Phys. Rev. E 71, 036412 (2005).

    Article  ADS  Google Scholar 

  20. Schreiber, J. et al. Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97, 045005 (2006).

    Article  ADS  Google Scholar 

  21. Esirkepov, T. Z., Yamagiwa, M. & Tajima, T. Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001 (2006).

    Article  ADS  Google Scholar 

  22. Oishi, Y. et al. Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Phys. Plasmas 12, 073102 (2005).

    Article  ADS  Google Scholar 

  23. Fuchs, J. et al. Laser-driven proton acceleration: scaling laws and new paths towards energy increase. Nature Phys. 2, 48–54 (2006).

    Article  ADS  Google Scholar 

  24. Mora, P. Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003).

    Article  ADS  Google Scholar 

  25. Schwoerer, H. et al. Laser-plasma acceleration of quasi-monoenergetic protons with microstructured targets. Nature 439, 445–448 (2006).

    Article  ADS  Google Scholar 

  26. Wilks, S. C. et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).

    Article  ADS  Google Scholar 

  27. Zepf, M. et al. Proton acceleration from high-intensity laser interactions with thin foil targets. Phys. Rev. Lett. 90, 064801 (2003).

    Article  ADS  Google Scholar 

  28. Roth, M. et al. Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. Special Topics-Accelerators and Beams 5, 061301 (2002).

    Article  ADS  Google Scholar 

  29. Mora, P. Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401 (2005).

    Article  ADS  Google Scholar 

  30. Grismayer, T. & Mora, P. Influence of a finite initial ion density gradient on plasma expansion into a vacuum. Phys. Plasmas 13, 032103 (2006).

    Article  ADS  Google Scholar 

  31. Silva, L. O. et al. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).

    Article  ADS  Google Scholar 

  32. Esirkepov, T. Z. et al. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).

    Article  ADS  Google Scholar 

  33. Lindau, F. et al. Laser-accelerated protons with energy dependent beam direction. Phys. Rev. Lett. 95, 175002 (2005).

    Article  ADS  Google Scholar 

  34. Kaluza, M. et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the scientific and technical expertise of the personnel at the Vulcan High Power Laser Facility. O.L. and F.L. acknowledge support from the COST programme. M.Z. holds a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. McKenna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, L., Simpson, P., Clarke, R. et al. Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nature Phys 3, 58–62 (2007). https://doi.org/10.1038/nphys476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing