Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates

Abstract

The superconducting temperature Tc of hole-doped high-temperature superconductors has a dome-like shape as a function of hole concentration, with a maximum Tc at ‘optimal’ doping. On the underdoped side, the superconducting state is often described in terms of one energy scale, associated with the maximum of the d-wave gap (at the antinodes), which increases as the doping decreases. Here, we report electronic Raman scattering experiments that show a second energy scale in the gap function: the slope of the gap at the nodes, which decreases with decreasing doping. Our measurements also reveal two distinct quasiparticle dynamics; electronic coherence persists down to low doping levels at the nodes, whereas antinodal quasiparticles become incoherent. Using a sum-rule, we find that the low-frequency Raman response and the temperature dependence of the superfluid density, both controlled by nodal excitations, behave in a qualitatively similar manner with doping variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman responses in the nodal (B2g) and antinodal (B1g) regions as a function of doping.
Figure 2: Universal doping dependence of the ratios ωAN/Tcmax and ωN/Tcmax of the antinodal (B1g) and nodal (B2g) superconducting peaks (obtained from Hg-1201 (this work), Bi-2212 in refs 3 4, Y-123 in refs 4 5 and LSCO in ref. 4).
Figure 3: Normalized Raman response functions with respect to the sum rule.
Figure 4: Doping dependence of the low-energy slope α of the nodal (B2g) Raman response (α=(NF/vΔ)(ZΛ)N2), normalized to the optimal doping one (p=0.16).
Figure 5: Phenomenological description of the Raman response of underdoped cuprates.

Similar content being viewed by others

References

  1. Timusk, T. & Statt, B. W. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  2. Devereaux, T. P. & Einzel, D. Electronic Raman scattering in superconductors as a probe of anisotropic electron pairing. Phys. Rev. B 51, 16336–16357 (1995).

    Article  ADS  Google Scholar 

  3. Venturini, F. et al. Doping dependence of the electronic Raman spectra in cuprates. J. Phys. Chem. Solids 63, 2345–2349 (2002).

    Article  ADS  Google Scholar 

  4. Sugai, S., Suzuki, H., Takayanagi, Y., Hosokawa, T. & Hayamizu, N. Carrier-density-dependent momentum shift of the coherent peak and the LO phonon mode in p-type high-T c superconductors. Phys. Rev. B 68, 184504 (2003).

    Article  ADS  Google Scholar 

  5. Chen, X. K. et al. Electronic Raman scattering in underdoped YBa2Cu3O6.5 . Phys. Rev. B 56, R513–R516 (1997).

    Article  ADS  Google Scholar 

  6. Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S. & Flower, N. E. General trends in oxygen stoichiometry effects on T c in Bi and Tl superconductors. Physica C 176, 95–105 (1991).

    Article  ADS  Google Scholar 

  7. Chubukov, A. V., Devereaux, T. P. & Klein, M. V. Resonance mode in B1g Raman scattering: A way to distinguish between spin-fluctuation and phonon-mediated d-wave superconductivity. Phys. Rev. B 73, 094512 (2006).

    Article  ADS  Google Scholar 

  8. Klein, M. V. & Dierker, S. B. Theory of Raman scattering in superconductors. Phys. Rev. B 29, 4976–4991 (1984).

    Article  ADS  Google Scholar 

  9. Hewitt, K. C. & Irwin, J. C. Doping dependence of the superconducting gap in Bi2Sr2CaCu2O8−δ . Phys. Rev. B 66, 054516 (2002).

    Article  ADS  Google Scholar 

  10. Bonn, D. A. et al. Surface impedance studies of YBCO. Czech. J. Phys. 46, 3195–3202 (1996).

    Article  Google Scholar 

  11. Panagopoulos, C. & Xiang, T. Relationship between the superconducting energy gap and the critical temperature in high-T c superconductors. Phys. Rev. Lett. 81, 2336–2339 (1998).

    Article  ADS  Google Scholar 

  12. Lee, P. A. & Wen, X. G. Unusual superconducting state of underdoped cuprates. Phys. Rev. Lett. 78, 4111–4114 (1997).

    Article  ADS  Google Scholar 

  13. Wen, X. G. & Lee, P. A. Theory of quasiparticles in the underdoped high-T c superconducting state. Phys. Rev. Lett. 80, 2193–2196 (1998).

    Article  ADS  Google Scholar 

  14. Ioffe, L. B. & Millis, A. J. d-wave superconductivity in doped Mott insulators. J. Phys. Chem. Solids 63, 2259–2268 (2002).

    Article  ADS  Google Scholar 

  15. Broun, D. M. et al. Superfluid density reveals a quantum critical point between d-wave superconductivity and a Mott insulator. Preprint at <http://arxiv.org/cond-mat0509223> (2005).

  16. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  17. Kotliar, G. & Liu, J. The superexchange mechanism and d-wave superconductivity. Phys. Rev. B 38, 5142–5145 (1988).

    Article  ADS  Google Scholar 

  18. Gros, C. Superconductivity in correlated wave functions. Phys. Rev. B 38, 931–934 (1988).

    Article  ADS  Google Scholar 

  19. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the plain vanilla version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004).

    Article  Google Scholar 

  20. Yoshida, T. et al. Metallic behavior of lightly doped La2−xSrxCuO4 with a Fermi surface forming an arc. Phys. Rev. Lett. 91, 027001 (2003).

    Article  ADS  Google Scholar 

  21. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  22. Mesot, J. et al. Superconducting gap anisotropy and quasiparticle interaction: A doping dependent photoemission study. Phys. Rev. Lett. 83, 840–843 (1999).

    Article  ADS  Google Scholar 

  23. Borisenko, S. V. et al. Superconducting gap in the presence of bilayer splitting in underdoped (Pb,Bi)2Sr2CaCu2O8−δ . Phys. Rev. B 66, 140509(R) (2002).

    Article  ADS  Google Scholar 

  24. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-T c superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  25. Benfatto, L., Caprara, S. & Di Castro, C. Gap and pseudogap evolution within the charge-ordering scenario for superconducting cuprates. Eur. Phys. J. B 17, 95–102 (2000).

    Article  ADS  Google Scholar 

  26. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  27. Won, H., Haas, S., Parker, D. & Maki, K. High-Tc cuprate superconductivity in a nutshell. Phys. Status Solidi B 242, 363–369 (2005).

    Article  ADS  Google Scholar 

  28. Campuzano, J. C. et al. Electronic spectra and their relation to the (π,π) collective mode in high-T c superconductors. Phys. Rev. Lett. 83, 3709–3712 (1999).

    Article  ADS  Google Scholar 

  29. Ding, H. et al. Coherent quasiparticle weight and its connection to high-T c superconductivity from angle-resolved photoemission. Phys. Rev. Lett. 87, 227001 (2001).

    Article  ADS  Google Scholar 

  30. Sutherland, M. et al. Thermal conductivity across the phase diagram of cuprates: Low-energy quasiparticles and doping dependence of the superconducting gap. Phys. Rev. B 67, 174520 (2003).

    Article  ADS  Google Scholar 

  31. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  ADS  Google Scholar 

  32. Miyakawa, N., Guptasarma, P., Zasadzinski, J. F., Hinks, D. G. & Gray, K. E. Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi2Sr2CaCu2O8−δ . Phys. Rev. Lett. 80, 157–160 (1998).

    Article  ADS  Google Scholar 

  33. Miyakawa, N. et al. Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8−δ from tunneling spectroscopy. Phys. Rev. Lett. 83, 1018–1021 (1999).

    Article  ADS  Google Scholar 

  34. DeWilde, Y. et al. Unusual strong-coupling effects in the tunneling spectroscopy of optimally doped and overdoped Bi2Sr2CaCu2O8−δ . Phys. Rev. Lett. 80, 153–156 (1998).

    Article  ADS  Google Scholar 

  35. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  36. Deutscher, G. Coherence and single-particle excitations in the high-temperature superconductors. Nature 397, 410–412 (1999).

    Article  ADS  Google Scholar 

  37. Stojkovic, B. P. & Pines, D. Theory of the longitudinal and Hall conductivities of the cuprate superconductors. Phys. Rev. B 55, 8576–8595 (1997).

    Article  ADS  Google Scholar 

  38. Ioffe, L. B. & Millis, A. J. Zone-diagonal-dominated transport in high-T c cuprates. Phys. Rev. B 58, 11631–11637 (1998).

    Article  ADS  Google Scholar 

  39. Honerkamp, C., Salmhofer, M., Furukawa, N. & Rice, T. M. Breakdown of the Landau–Fermi liquid in two dimensions due to umklapp scattering. Phys. Rev. B 63, 035109 (2001).

    Article  ADS  Google Scholar 

  40. Katanin, A. A. & Kampf, A. P. Quasiparticle anisotropy and pseudogap formation from the weak-coupling renormalization group point of view. Phys. Rev. Lett. 93, 106406 (2004).

    Article  ADS  Google Scholar 

  41. Civelli, M., Capone, M., Kancharla, S. S., Parcollet, O. & Kotliar, G. Dynamical breakup of the Fermi surface in a doped mott insulator. Phys. Rev. Lett. 95, 106402 (2005).

    Article  ADS  Google Scholar 

  42. Sénéchal, D. & Tremblay, A. M. S. Hot spots and pseudogaps for hole- and electron-doped high-temperature superconductors. Phys. Rev. Lett. 92, 126401 (2004).

    Article  ADS  Google Scholar 

  43. Bertinotti, A. et al. in Studies of High Temperature Superconductors Vol. 23 (ed. Narlikar, A.) 27–85 (Nova Science Publishers, New York, 1997).

    Google Scholar 

  44. Le Tacon, M., Sacuto, A. & Colson, D. Two distinct electronic contributions in the fully symmetric Raman response of high T c cuprates. Phys. Rev. B 71, 100504(R) (2005).

    Article  ADS  Google Scholar 

  45. Opel, M. et al. Carrier relaxation, pseudogap, and superconducting gap in high-T c cuprates: A Raman scattering study. Phys. Rev. B 61, 9752–9844 (2000).

    Article  ADS  Google Scholar 

  46. Larkin, A. I. Effect of collective excitations on the electrodynamics of superconductors. Sov. Phys. JETP 19, 1478–1486 (1964).

    Google Scholar 

  47. Leggett, A. J. Theory of a superfluid Fermi liquid. I. General formalism and static properties. Phys. Rev. 140, A1869–A1888 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  48. Freericks, J. K., Devereaux, T. P., Moraghebi, M. & Cooper, S. L. Optical sum rules that relate to the potential energy of strongly correlated systems. Phys. Rev. Lett. 94, 216401 (2005).

    Article  ADS  Google Scholar 

  49. Shastry, S. & Shraiman, B. Theory of Raman scattering in Mott-Hubbard systems. Phys. Rev. Lett. 65, 1068–1071 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Biermann, N. Bontemps, S.V. Borisenko, P. Bourges, M. Cazayous, R. Combescot, L. ’de Medici, T.P. Devereaux, K. McElroy, P. Monod, M. Norman, Z.-X. Shen, and L. Taillefer for useful discussions. This research was supported by CNRS, Ecole Polytechnique and the ‘Chaire Blaise Pascal de la Fondation de l’Ecole Normale Supérieure et de la région Ile de France’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Le Tacon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Tacon, M., Sacuto, A., Georges, A. et al. Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nature Phys 2, 537–543 (2006). https://doi.org/10.1038/nphys362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing