Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The loss of vortex line tension sets an upper limit to the irreversibility line in YBa2Cu3O7

Abstract

In high-temperature superconductors, magnetic field lines penetrate the samples through vortices arranged in an Abrikosov vortex lattice. In a magnetic field Hm(T ) below the upper critical field Hc2(T ) that destroys bulk superconductivity, the vortex lattice melts to a liquid vortex state, in which each vortex line must be ‘pinned’ individually to prevent dissipation. Linear and planar defects have been found to be effective for pinning the vortex liquid because they trap an entire vortex within a single extended defect. However, up to now it is not known how far into the liquid state this pinning process can be effective. Here, we show that there is a universal magnetic field line Hl(T ) between Hm(T ) and Hc2(T ), where thermodynamic fluctuations of the order parameter can cause vortex unpinning from extended defects. This magnetic field Hl(T ) sets an upper limit to the irreversibility line Hirr(T ) marking the onset of dissipation. For that reason it determines a new magnetic-field–temperature region in which a superconductor can remain useful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angular dependence of the magnetoresistance.
Figure 2: Flux transformer experiments for a twinned YBCO crystal.
Figure 3: Angular-dependent magnetic phase diagram of a twinned YBCO crystal at H=3 T when the magnetic field rotates from H c to H a b.
Figure 4: In-plane defects and their influence on the magnetic phase diagram.
Figure 5: Magnetic phase diagram for H c for the different vortex states observed in twinned and ion-irradiated YBCO single crystals.

Similar content being viewed by others

References

  1. Abrikosov, A. A. On the magnetic properties of superconductors of second group. Sov. Phys. JETP 5, 1174–1182 (1957).

    Google Scholar 

  2. Safar, H. et al. Experimental evidence for a first order vortex-lattice-melting transition multicritical in untwinned single crystal YBa2Cu3O7−δ . Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  Google Scholar 

  3. Zeldov, E. et al. Thermodynamic observation of first order vortex-lattice melting transition in BSCCO. Nature 375, 373–376 (1995).

    Article  ADS  Google Scholar 

  4. Schilling, A. et al. Calorimetic measurement of the latent heat of vortex-lattice melting in untwinned YBCO. Nature 382, 791–793 (1996).

    Article  ADS  Google Scholar 

  5. Crabtree, G. W. & Nelson, D. R. Vortex physics in high-temperature superconductors. Phys. Today 50, 38–45 (1997).

    Article  Google Scholar 

  6. Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  Google Scholar 

  7. Civale, L. et al. Vortex confinement by columnar defects in YBa2Cu3O7−δ single crystals: Enhanced pinning at high fields and high temperatures. Phys. Rev. Lett. 67, 648–651 (1991).

    Article  ADS  Google Scholar 

  8. Kwok, W. K. et al. Vortex lattice melting in untwinned and twinned single crystals of YBCO. Phys. Rev. Lett. 69, 3370–3373 (1992).

    Article  ADS  Google Scholar 

  9. Nelson, D. R. & Vinokur, V. M. Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B 48, 13060–13097 (1993).

    Article  ADS  Google Scholar 

  10. Samoilov, A. V., Feigel'man, M. V., Konczykowski, M. & Holtzberg, F. Upper limit of the Bose-Glass transition in YBa2Cu3O7 at high density of columnar defects. Phys. Rev. Lett. 76, 2798–2801 (1996).

    Article  ADS  Google Scholar 

  11. Konczykowski, M. & Samoilov, A. V. Comment. Phys. Rev. Lett. 78, 1830 (1997).

    Article  ADS  Google Scholar 

  12. Civale, L. & Krusin-Elbaum, L. Comment. Phys. Rev. Lett. 78, 1829 (1997).

    Article  ADS  Google Scholar 

  13. López, D., Righi, E. F., Nieva, G. & de la Cruz, F. Coincidence of vortex lattice melting and loss of vortex correlation along the c direction in untwinned YBa2Cu3O7−δ single crystals. Phys. Rev. Lett. 76, 4034–4037 (1996).

    Article  ADS  Google Scholar 

  14. Righi, E. F., Grigera, S. A., Nieva, G., López, D. & de la Cruz, F. Finite vortex correlation in the c-direction in YBa2Cu3O7−δ above the first-order melting transition. Phys. Rev. B 55, 14156–14159 (1997).

    Article  ADS  Google Scholar 

  15. Rydh, A. & Rapp, Ö. Strong vortex liquid correlation from multiterminal measurements on untwinned YBa2Cu3O7−x single crystals. Phys. Rev. Lett. 86, 1873–1876 (2001).

    Article  ADS  Google Scholar 

  16. Maiorov, B., Silhanek, A. V., de la Cruz, F. & Osquiguil, E. Comment. Phys. Rev. Lett. 88, 139703 (2002).

    Article  ADS  Google Scholar 

  17. Rydh, A. & Rapp, Ö. Comment. Phys. Rev. Lett. 88, 139704 (2002).

    Article  ADS  Google Scholar 

  18. Puig, T. & Obradors, X. Anisotropic vortex plasticity in the liquid state of YBa2Cu3O7: Evidence for quenched c-axis correlation length. Phys. Rev. Lett. 84, 1571–1574 (2000).

    Article  ADS  Google Scholar 

  19. Figueras, J., Puig, T. & Obradors, X. Influence of twin boundaries and randomly oriented correlated disorder on the liquid vortex plasticity of YBa2Cu3O7−x . Phys. Rev. B 67, 014503 (2003).

    Article  ADS  Google Scholar 

  20. Paulius, L. et al. Effects of 1 GeV uranium ion irradiation on vortex pinning in single crystals of the high temperature superconductor YBa2Cu3O7−δ . Phys. Rev. B 56, 913–924 (1997).

    Article  ADS  Google Scholar 

  21. Morré, E., Grigera, S. A., Osquiguil, E., Nieva, G. & de la Cruz, F. Angular restrictions on the glass transition and on the c-axis correlated liquid phase in twinned YBa2Cu3O7−x . Phys. Lett. A 233, 130–134 (1997).

    Article  ADS  Google Scholar 

  22. Blatter, G., Geshkenbein, V. B. & Larkin, A. I. From isotropic to anisotropic superconductors: A scaling approach. Phys. Rev. Lett. 68, 875–879 (1992).

    Article  ADS  Google Scholar 

  23. Plain, J., Puig, T., Sandiumenge, F., Obradors, X. & Rabier, J. Microstructural influence on critical currents and irreversibility line in melt-textured YBa2Cu3O7−δ reannealed at high oxygen pressure. Phys. Rev. B 65, 104526 (2002).

    Article  ADS  Google Scholar 

  24. Figueras, J. et al. in the press (2006).

  25. Schilling, A., Welp, U., Kwok, W. K. & Crabtree, G. W. Vortex-lattice melting in untwinned YBa2Cu3O7−δ for Hc . Phys. Rev. B 65, 054505 (2002).

    Article  ADS  Google Scholar 

  26. Fleshler, S. et al. Anisotropy and Lorentz-force dependence of twin-boundary pinning and its effect on flux-lattice melting in single-crystal YBa2Cu3O7−δ . Phys. Rev. B 47, 14448–14461 (1993).

    Article  ADS  Google Scholar 

  27. Figueras, J., Puig, T., Obradors, X., Erb, A. & Walker, E. Anisotropy of the low-field critical point of the melting line of twinned YBa2Cu3O7−δ single crystals. Phys. Rev. B 65, 092505 (2002).

    Article  ADS  Google Scholar 

  28. Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G. & Liu, J. Z. Magnetic measurements of the upper critical field of YBa2Cu3O7−δ single crystals. Phys. Rev. Lett. 62, 1908–1911 (1989).

    Article  ADS  Google Scholar 

  29. Ossandon, J. G. et al. Influence of oxygen deficiency on the superconducting properties of grain-aligned YBa2Cu3O7−δ . Phys. Rev. B 60, 12534–12547 (1992).

    Article  ADS  Google Scholar 

  30. Nelson, D. R. in The Vortex State (eds Bontemps, N., Bruynseraede, Y., Deutscher, G. & Kapitulnik, A.) 41 (NATO ASI Series, Vol. 438, Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  31. Deutscher, G. in Coherence In High Temperature Superconductors (eds Deutscher, G. & Recolevski, A.) 3–15 (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  32. Brandt, E. H. Large range of validity of linear elasticity of the vortex lattice in high-Tc superconductors. Phys. Rev. Lett. 69, 1105–1108 (1992).

    Article  ADS  Google Scholar 

  33. Nguyen, A. K. & Sudbo, A. Topological phase fluctuations, amplitude fluctuations, and criticality in extreme type-II superconductors. Phys. Rev. B 60, 15307–15331 (1999).

    Article  ADS  Google Scholar 

  34. Mikitik, G. P. & Brandt, E. H. Peak effect, vortex-lattice melting line, and order-disorder transition in conventional and high-Tc superconductors. Phys. Rev. B 64, 184514 (2001).

    Article  ADS  Google Scholar 

  35. Babic, D., Cooper, J. R., Hodby, J. W. & Changkang, C. Changes in irreversibility line, anisotropy and condensation energy by oxygen depletion of YBa2Cu3O7−δ . Phys. Rev. B 60, 698–706 (1999).

    Article  ADS  Google Scholar 

  36. Muradlidhar, M. et al. New type of vortex pinning structure effective at very high magnetic fields. Phys. Rev. Lett. 89, 237001 (2002).

    Article  ADS  Google Scholar 

  37. Obradors, X. et al. Directional solidification of REBa2Cu3O7 (RE=Y, Nd): microstructure and superconducting properties. Supercond. Sci. Technol. 10, 884–890 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from MCYT (MAT2002-02642 and MAT2003-01584), Generalitat de Catalunya (Catalan Pla de Recerca 000206 and CeRMAE) and EU network SCENET. The contribution of J. Plain to the obtention of the transmission electron micrograph and fruitful discussions with F. de la Cruz are acknowledged. J.F. acknowledges Generalitat de Catalunya for a PhD fellowship. The work at Argonne National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. W-31-109-ENG-38. G.D. wishes to acknowledge the partial support of the ISF, of the Minerva Center for High Temperature Superconductivity, and of the Oren Family Chair for Experimental Solid State Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Obradors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueras, J., Puig, T., Obradors, X. et al. The loss of vortex line tension sets an upper limit to the irreversibility line in YBa2Cu3O7. Nature Phys 2, 402–407 (2006). https://doi.org/10.1038/nphys311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing