Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin

Abstract

The conformational energy landscape of a protein out of equilibrium is poorly understood. We use single-molecule force-clamp spectroscopy to measure the kinetics of unfolding of the protein ubiquitin under a constant force. We discover a surprisingly broad distribution of unfolding rates that follows a power law with no characteristic mean. The structural fluctuations that give rise to this distribution reveal the architecture of the protein’s energy landscape. Following models of glassy dynamics, this complex kinetics implies large fluctuations in the energies of the folded protein, characterized by an exponential distribution with a width of 5–10kBT. Our results predict the existence of a ‘glass transition’ force below which the folded conformations interconvert between local minima on multiple timescales. These techniques offer a new tool to further test statistical energy landscape theories experimentally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM force-clamp spectroscopy experiments on single polyproteins.
Figure 2: Average unfolding trajectory obtained by summing over 416 single-chain trajectories or 2,625 events (black curve), analogous to ensemble measurements.
Figure 3: Normalized histogram of the unfolding rates of each poly-ubiquitin chain.
Figure 4: Histogram in Fig. 3 plotted on a log–log scale reveals a power-law distribution of rate constants (blue diamonds) per ubiquitin chain that spans more than two decades with a decay exponent γ=1.8.
Figure 5: Shape and breadth of the distribution of energy barriers in the protein energy landscape under a constant force.

Similar content being viewed by others

References

  1. Ansari, A. et al. Protein states and proteinquakes. Proc. Natl Acad. Sci. USA 82, 5000–5004 (1985).

    Article  ADS  Google Scholar 

  2. Frauenfelder, H., Sligar, S. G. & Wolynes, P. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  ADS  Google Scholar 

  3. Karplus, M., Gao, Y. Q., Ma, J., van der Vaart, A. & Yang, W. Protein structural transitions and their functional role. Phil. Trans. A 363, 331–356 (2005).

    Article  ADS  Google Scholar 

  4. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167195 (1995).

    Article  Google Scholar 

  5. Dill, K. A. et al. Principles of protein folding — a perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    Article  Google Scholar 

  6. Lazaridis, T. & Karplus, M. ‘New view’ of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 (1997).

    Article  ADS  Google Scholar 

  7. Hyeon, C. & Thirumalai, D. Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc. Natl Acad. Sci. USA 100, 10249–10253 (2003).

    Article  ADS  Google Scholar 

  8. Kneller, G. R. Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models. Phys. Chem. Chem. Phys. 7, 2641–2655 (2005).

    Article  Google Scholar 

  9. Lindorff-Larsen, K., Best, R. B., DePristo, M. A., Dobson, C. M. & Vendruscolo, M. Simultaneous determination of protein structure and dynamics. Nature 433, 128–132 (2005).

    Article  ADS  Google Scholar 

  10. Xue, Q. & Yeung, E. S. Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

    Article  ADS  Google Scholar 

  11. van Oijen, A. M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

    Article  ADS  Google Scholar 

  12. Itoh, K. & Sasai, M. Dynamical transition and proteinquake in photoactive yellow protein. Proc. Natl Acad. Sci. USA 101, 14736–14741 (2004).

    Article  ADS  Google Scholar 

  13. Yang, H. et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003).

    Article  ADS  Google Scholar 

  14. Min, W., Luo, G., Cherayil, B. J., Kou, S. C. & Xie, X. S. Observation of a power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 94, 198302 (2005).

    Article  ADS  Google Scholar 

  15. Fersht, A. R. Structure and Mechanism in Protein Science (Freeman, New York, 1992).

    Google Scholar 

  16. Carrion-Vazquez, M. et al. Protein nanomechanics — as studied by single-molecule force spectroscopy AFM. Biophys. J. 75, 662–671 (1998).

    Article  Google Scholar 

  17. Li, H. B., Carrion-Vazquez, M., Oberhauser, A. F., Marszalek, P. E. & Fernandez, J. M. Point mutations alter the mechanical stability of immunoglobulin modules. Nature Struct. Biol. 7, 1117–1120 (2000).

    Article  Google Scholar 

  18. Schlierf, M., Li, H. & Fernandez, J. M. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc. Natl Acad. Sci. USA 101, 7299–7304 (2004).

    Article  ADS  Google Scholar 

  19. Ross, S. Stochastic Processes (Wiley, New York, 1996).

    MATH  Google Scholar 

  20. Johnston, D. & Wu, S. M. Foundations of Cellular Neurophysiology (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  21. Colquhoun, D., Hatton, C. J. & Hawkes, A. G. The quality of maximum likelihood estimates of ion channel rate constants. J. Physiol. 547, 699–728 (2003).

    Article  Google Scholar 

  22. Chekmarev, S. F., Krivov, S. V. & Karplus, M. Folding time distributions as an approach to protein folding kinetics. J. Phys. Chem. B 109, 5312–5330 (2005).

    Article  Google Scholar 

  23. Lee, C., Stell, G. & Wang, J. First passage time distribution and non-markovian diffusion dynamics of protein folding. J. Chem. Phys. 118, 959–968 (2003).

    Article  ADS  Google Scholar 

  24. Angell, C. A. Perspective on the glass-transition. J. Phys. Chem. Solids 49, 863–871 (1988).

    Article  ADS  Google Scholar 

  25. Lubchenko, V. & Wolynes, P. G. Theory of aging in structural glasses. J. Chem. Phys. 121, 2852–2865 (2004).

    Article  ADS  Google Scholar 

  26. Marques, M. I. & Stanley, H. E. Relationship between fragility, diffusive directions and energy barriers in a supercooled liquid. Physica A 345, 395–403 (2005).

    Article  ADS  Google Scholar 

  27. Derrida, B. Random-energy model — limit of a family of disordered models. Proc. Natl Acad. Sci. USA 45, 79–82 (1980).

    MathSciNet  Google Scholar 

  28. Pande, V., Grosberg, A. & Tanaka, T. Statistical mechanics of simple models of protein folding and design. Biophys. J. 73, 3192–3210 (1997).

    Article  Google Scholar 

  29. Bercu, V., Martinelli, M., Massa, C., Pardi, L. & Leporini, D. A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy barriers revealed by high-field electron spin resonance spectroscopy. Biophys. J. 16, L479–L488 (2004).

    Google Scholar 

  30. Monthus, C. & Bouchaud, J. Models of traps and glass phenomenology. J. Phys. A 29, 3847–3869 (1996).

    Article  ADS  Google Scholar 

  31. Lee, A. L. & Wand, A. J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2004).

    Article  ADS  Google Scholar 

  32. Nevo, R., Brumfeld, V., Kapon, R., Hinterdorfer, P. & Reich, Z. Direct measurement of protein energy landscape roughness. EMBO Rep. 6, 482–486 (2005).

    Article  Google Scholar 

  33. Rao, F. & Caflisch, A. The protein folding network. J. Mol. Biol. 342, 299–306 (2004).

    Article  Google Scholar 

  34. Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nature 5, 101–113 (2004).

    Google Scholar 

  35. Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–395 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. H. Huang for making the ubiquitin construct, S. Garcia-Manyes for data collection, and H. A. Makse and A. J. Tolley for enlightening discussions. This work has been supported by NIH grant R01 HL66030 to J.M.F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jasna Brujić or Julio M. Fernandez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brujić, J., Hermans Z., R., Walther, K. et al. Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin. Nature Phys 2, 282–286 (2006). https://doi.org/10.1038/nphys269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing