Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric-dipole-induced spin resonance in disordered semiconductors

Abstract

One of the hallmarks of spintronics is the control of magnetic moments by electric fields enabled by strong spin–orbit interaction (SOI) in semiconductors. A powerful way of manipulating spins in such structures is electric-dipole-induced spin resonance (EDSR), where the radio-frequency fields driving the spins are electric, not magnetic as in standard paramagnetic resonance. Here, we present a theoretical study of EDSR for a two-dimensional electron gas in the presence of disorder, where random impurities not only determine the electric resistance but also the spin dynamics through SOI. Considering a specific geometry with the electric and magnetic fields parallel and in-plane, we show that the magnetization develops an out-of-plane component at resonance that survives the presence of disorder. We also discuss the spin Hall current generated by EDSR. These results are derived in a diagrammatic approach, with the dominant effects coming from the spin vertex correction, and the optimal parameter regime for observation is identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup for EDSR.
Figure 2: Diagrammatic equation for the spin-vertex correction .
Figure 3: EDSR and linewidth in a disordered 2DEG.

Similar content being viewed by others

References

  1. Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

  2. Zutic, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  3. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  ADS  Google Scholar 

  4. Rashba, E. I. Properties of semiconductors with an extremum loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  5. Bell, R. L. Electric dipole spin transitions in InSb. Phys. Rev. Lett. 9, 52–54 (1962).

    Article  ADS  Google Scholar 

  6. Melnikov, V. I. & Rashba, E. I. Influence of impurities on combined resonance in semiconductors. Sov. Phys. JETP 34, 1353–1358 (1972).

    ADS  Google Scholar 

  7. Dobrowolska, M. et al. Far-infrared observation of the electric-dipole spin resonance of donor electrons in Cd1−xMnxSe . Phys. Rev. B 29, 6652–6663 (1984).

    Article  ADS  Google Scholar 

  8. Merkt, U., Horst, M., Evelbauer, T. & Kotthaus, J. P. Cyclotron and spin resonance in electron inversion layers on InSb. Phys. Rev. B 34, 7234–7245 (1986).

    Article  ADS  Google Scholar 

  9. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004).

    Article  ADS  Google Scholar 

  10. Rashba, E. I. & Efros, Al. L. Efficient electron spin manipulation in a quantum well by an in-plane electric field. Appl. Phys. Lett. 83, 5295–5297 (2003).

    Article  ADS  Google Scholar 

  11. Schulte, M., Lok, J. G. S., Denninger, G. & Dietsche, W. Electron spin resonance on a two-dimensional electron gas in a single AlAs quantum well. Phys. Rev. Lett. 94, 137601 (2005).

    Article  ADS  Google Scholar 

  12. Edelstein, V. M. Space dispersion feature of the conduction electron spin resonance in two-dimensional electron systems caused by absence of ‘up-down’ symmetry. J. Phys. C 5, 2603–2618 (1993).

    Google Scholar 

  13. Erlingsson, S. I., Schliemann, J. & Loss, D. Spin susceptibilities, spin densities and their connection to spin-currents. Phys. Rev. B 71, 035319 (2005).

    Article  ADS  Google Scholar 

  14. D’yakonov, M. I. & Perel’, M. I. Possibility of orienting spins with current. JETP Lett. 13, 467–469 (1971).

    ADS  Google Scholar 

  15. Murakami, S., Nagosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2004).

    Article  ADS  Google Scholar 

  16. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  17. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  18. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005).

    Article  ADS  Google Scholar 

  19. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    Article  ADS  Google Scholar 

  20. Miller, J. B. et al. Gate-controlled spin-orbit quantum interference effects in lateral transport. Phys. Rev. Lett. 90, 076807 (2003).

    Article  ADS  Google Scholar 

  21. Rashba, E. I. & Efros, Al. L. Orbital mechanisms of electron spin manipulation by an electric field. Phys. Rev. Lett. 91, 126405 (2003).

    Article  ADS  Google Scholar 

  22. Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).

    Article  ADS  Google Scholar 

  23. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  ADS  Google Scholar 

  24. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  ADS  Google Scholar 

  25. Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  ADS  Google Scholar 

  26. Schliemann, J., Loss, D. & Westervelt, R. M. Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005).

    Article  ADS  Google Scholar 

  27. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  28. D’yakonov, M. I. & Perel’, V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1972).

    Google Scholar 

  29. D’yakonov, M. I. & Perel’, V. I. in Optical Orientation (eds Meier, F. & Zakharchenya, B.) (Elsevier, Amsterdam, 1984).

    Google Scholar 

  30. Inoue, J., Bauer, G. E. W. & Molenkamp, L. W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 70, 041303 (2004).

    Article  ADS  Google Scholar 

  31. Mishchenko, E. G., Shytov, A. V. & Halperin, B. I. Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling. Phys. Rev. Lett. 93, 226602 (2004).

    Article  ADS  Google Scholar 

  32. Dimitrova, O. V. Spin-Hall conductivity in a two-dimensional Rashba electron gas. Phys. Rev. B 71, 245327 (2005).

    Article  ADS  Google Scholar 

  33. Chalaev, O. & Loss, D. Spin-Hall conductivity due to Rashba spin-orbit interaction in disordered systems. Phys. Rev. B 71, 245318 (2005).

    Article  ADS  Google Scholar 

  34. Engel, H.-A., Halperin, B. I. & Rashba, E. I. Theory of spin Hall conductivity in n-doped GaAs. Phys. Rev. Lett. 95, 166605 (2005).

    Article  ADS  Google Scholar 

  35. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  36. Cohen-Tannoudji, C., Diu, B. & Laloe, F. Quantum Mechanics (Wiley, New York, 1977).

    MATH  Google Scholar 

  37. Rammer, J. Quantum Transport Theory (Perseus Books, Reading, Massachusetts, 1998).

    MATH  Google Scholar 

  38. Edelstein, V. M. Band-spin-orbit-energy effects in conductivity of two-dimensional weakly disordered semiconductor systems. J. Phys. C 7, 1–18 (1995).

    Google Scholar 

  39. Abragam, A. The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

Download references

Acknowledgements

We thank O. Chalaev, J. Lehmann, D. Bulaev, W. Coish, S. Erlingsson, D. Saraga, and D. Klauser for discussions. This work was supported by the Swiss NSF, the NCCR Nanoscience, EU RTN Spintronics, DARPA, and ONR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Duckheim or Daniel Loss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duckheim, M., Loss, D. Electric-dipole-induced spin resonance in disordered semiconductors. Nature Phys 2, 195–199 (2006). https://doi.org/10.1038/nphys238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing