Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring and controlling the birth of attosecond XUV pulses

Abstract

Generating attosecond pulses has required a radically different approach from previous ultrafast optical methods. The technology of attosecond measurement, however, is built on established methods of characterizing femtosecond pulses: the pulse is measured after it has left the region where it was produced. We offer a completely different approach: in situ measurement. That is, we integrate attosecond-pulse production and measurement in a manner that can be applied to many high-order nonlinear interactions. To demonstrate this approach, we combine a low-intensity (<10−3) second-harmonic beam with the fundamental beam, to gently perturb the production process without significantly modifying it. The attosecond-pulse duration is read from the modulation of the even-harmonic signal as a function of the two-field delay. Increasing the second-harmonic intensity slightly (<10−2), we extend measurement to control. We demonstrate control by manipulating the high-harmonic spectrum with high efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphic description of the symmetry breaking between two electron trajectories induced by the addition of the second harmonic field.
Figure 2: The harmonic spectrum is shown versus the phase difference between the fundamental and second-harmonic fields.
Figure 3: The reconstruction procedure for the harmonics’ time of emission.
Figure 4: Measurement of the spatio-temporal profile of the 20th harmonic.
Figure 5: When the intensity of the second-harmonic field is increased to 5×10−3 of the fundamental intensity, control of the odd harmonics becomes possible.
Figure 6: Schematic description of the experimental set-up.

Similar content being viewed by others

References

  1. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  2. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  3. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  4. Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Role of the intermolecular phase in high harmonic generation. Phys. Rev. Lett. 88, 183903 (2002).

    Article  ADS  Google Scholar 

  5. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005).

    Article  ADS  Google Scholar 

  6. Vozzi, C. et al. Controlling two-center interference in molecular high harmonic generation. Phys. Rev. Lett. 95, 153902 (2005).

    Article  ADS  Google Scholar 

  7. Antoine, Ph., L’Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  8. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  9. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  10. Quéré, F., Itatani, J., Yudin, G. L. & Corkum, P. B. Attosecond spectral shearing interferometry. Phys. Rev. Lett. 90, 073902 (2003).

    Article  ADS  Google Scholar 

  11. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  12. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-ray. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  13. Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    Article  ADS  Google Scholar 

  14. Cormier, E. Self-referencing, spectrally, or spatially encoded spectral interferometry for the complete characterization of attosecond electromagnetic pulses. Phys. Rev. Lett. 94, 033905 (2005).

    Article  ADS  Google Scholar 

  15. Shapiro, M. & Brumer, P. Laser control of product quantum state populations in unimolecular reactions. J. Chem. Phys. 84, 4103–4104 (1986).

    Article  ADS  Google Scholar 

  16. Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewski, Z. R. Phased-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).

    Article  ADS  Google Scholar 

  17. Bhat, R. D. R. & Sipe, J. E. Optically injected spin currents in semiconductors. Phys. Rev. Lett. 18, 5432–5435 (2000).

    Article  ADS  Google Scholar 

  18. Muller, H. G., Bucksbaum, P. H., Schumacher, D. W. & Zavriyev, A. Above-threshold ionization with a two-color laser field. J. Phys. B 23, 2761–2769 (1990).

    Article  ADS  Google Scholar 

  19. Yin, Y., Chen, C., Elliot, D. S. & Smith, A. V. Asymmetric photoelectron angular distributions from interfering photoionization processes. Phys. Rev. Lett. 69, 2353–2356 (1992).

    Article  ADS  Google Scholar 

  20. Eichmann, H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995).

    Article  ADS  Google Scholar 

  21. Andiel, U., Tsakiris, G. D., Cormier, E. & Witte, K. High-order harmonic amplitude modulation in two-color phase-controlled frequency mixing. Europhys. Lett. 47, 42–48 (1999).

    Article  ADS  Google Scholar 

  22. Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000).

    Article  ADS  Google Scholar 

  23. Lee, D. G., Kim, J. H., Hong, K. H. & Nam, C. H. Coherent control of high-order harmonics with chirped femtosecond laser pulses. Phys. Rev. Lett. 87, 243902 (2001).

    Article  ADS  Google Scholar 

  24. Pfeifer, T. et al. Spatial control of high-harmonic generation in hollow fibers. Opt. Lett. 30, 1497–1499 (2005).

    Article  ADS  Google Scholar 

  25. Kitzler, M. & Matthias, L. Spatial control of recollision wave packets with attosecond precision. Phys. Rev. Lett. 95, 253001 (2005).

    Article  ADS  Google Scholar 

  26. Watanabe, S., Kondo, K., Nabekawa, Y., Sagisaka, A. & Kobayashi, Y. Two-color phase control in tunneling ionization and harmonic generation by a strong laser field and its third harmonic. Phys. Rev. Lett. 73, 2692–2695 (1994).

    Article  ADS  Google Scholar 

  27. Kim, J. I. et al. Highly efficient high harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 94, 243901 (2005).

    Article  ADS  Google Scholar 

  28. Ivanov, M., Corkum, P. B., Zuo, T. & Bandrauk, A. Routes to control of intense-field atomic polarizability. Phys. Rev. Lett. 74, 2933–2936 (1995).

    Article  ADS  Google Scholar 

  29. Salieres, P., L’Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    Article  ADS  Google Scholar 

  30. Kane, D. J. & Trebino, R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571–572 (1993).

    Article  ADS  Google Scholar 

  31. Weckenbrock, M. et al. Fully differential rates for femtosecond multiphoton double ionization of Neon. Phys. Rev. Lett. 92, 213002 (2004).

    Article  ADS  Google Scholar 

  32. Rudenko, A. et al. Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms. Phys. Rev. Lett. 93, 253001 (2004).

    Article  ADS  Google Scholar 

  33. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    Article  ADS  Google Scholar 

  34. Tong, X. M., Zhao, Z. X. & Lin, C. D. Probing molecular dynamic at attosecond resolution with femtosecond laser pulses. Phys. Rev. Lett. 91, 233203 (2003).

    Article  ADS  Google Scholar 

  35. Milosevic, N., Corkum, P. B. & Brabec, T. How to use lasers for imagine attosecond dynamics of nuclear processes. Phys. Rev. Lett. 92, 013002 (2004).

    Article  ADS  Google Scholar 

  36. Smirnova, O., Spanner, M. & Ivanov, M. Yu. Coulomb and polarization effects in syb-cycle dynamics of strong field ionization. J. Phys B 39, s307–s321 (2006).

    Article  ADS  Google Scholar 

  37. Smirnova, O., Yakovlev, V. & Ivanov, M. Yu. Use of electron correlation to make attosecond measurements without attosecond pulses. Phys. Rev. Lett. 94, 213001 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. Zeidler and M. Gertsvolf for discussions and experimental help. Financial support by the Israeli Rothschild foundation and NSERC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Dudovich or P. B. Corkum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudovich, N., Smirnova, O., Levesque, J. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys 2, 781–786 (2006). https://doi.org/10.1038/nphys434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing