Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

Journal name:
Nature Physics
Volume:
13,
Pages:
535–539
Year published:
DOI:
doi:10.1038/nphys4111
Received
Accepted
Published online

At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark–gluon plasma (QGP)1. Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed2, 3, 4, 5, 6. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions7, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton–proton (pp) collisions8, 9, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton–proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p–Pb collision results10, 11, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb–Pb collisions, where a QGP is formed.

At a glance

Figures

  1. pT-differential yields of KS0, ,  and  measured in |y| < 0.5.
    Figure 1: pT-differential yields of KS0, , and measured in |y| < 0.5.

    The results are shown for a selection of event classes, indicated by roman numbers in brackets, with decreasing multiplicity. The error bars show the statistical uncertainty, whereas the empty boxes show the total systematic uncertainty. The data are scaled by different factors to improve the visibility. The dashed curves represent Tsallis–Lévy fits to each individual distribution to extract integrated yields. The indicated uncertainties all represent standard deviations.

  2. pT-integrated yield ratios to pions ([pi]+ + [pi]-) as a function of [lang]dNch/d[eta][rang] measured in |y| < 0.5.
    Figure 2: pT-integrated yield ratios to pions (π+ + π) as a function of left fencedNch/dηright fence measured in |y| < 0.5.

    The error bars show the statistical uncertainty, whereas the empty and dark-shaded boxes show the total systematic uncertainty and the contribution uncorrelated across multiplicity bins, respectively. The values are compared to calculations from MC models30, 31, 32 and to results obtained in p–Pb and Pb–Pb collisions at the LHC6, 10, 11. For Pb–Pb results the ratio 2Λ/(π+ + π) is shown. The indicated uncertainties all represent standard deviations.

  3. Particle yield ratios  and  as a function of [lang]dNch/d[eta][rang].
    Figure 3: Particle yield ratios and as a function of left fencedNch/dηright fence.

    The yield ratios are measured in the rapidity interval |y| < 0.5 . The error bars show the statistical uncertainty, whereas the empty and dark-shaded boxes show the total systematic uncertainty and the contribution uncorrelated across multiplicity bins, respectively. The values are compared to calculations from MC models30, 31, 32 in pp collisions at and to results obtained in p–Pb collisions at the LHC10. The indicated uncertainties all represent standard deviations.

  4. Particle yield ratios to pions normalized to the values measured in the inclusive INEL > 0 pp sample.
    Figure 4: Particle yield ratios to pions normalized to the values measured in the inclusive INEL > 0 pp sample.

    The results are shown for pp and p–Pb collisions, both normalized to the inclusive INEL > 0 pp sample. The error bars show the statistical uncertainty. The common systematic uncertainties cancel in the double ratio. The empty boxes represent the remaining uncorrelated uncertainties. The lines represent a simultaneous fit of the results with the empirical scaling formula in equation (1). The indicated uncertainties all represent standard deviations.

Main

The production of strange hadrons in high-energy hadronic interactions provides a way to investigate the properties of quantum chromodynamics (QCD), the theory of strongly interacting matter. Unlike up (u) and down (d) quarks, which form ordinary matter, strange (s) quarks are not present as valence quarks in the initial state, yet they are sufficiently light to be abundantly created during the course of the collisions. In the early stages of high-energy collisions, strangeness is produced in hard (perturbative) 2 right arrow 2 partonic scattering processes by flavour creation ( , ) and flavour excitation (gs right arrow gs,qs right arrow qs). Strangeness is also created during the subsequent partonic evolution via gluon splittings ( ). These processes tend to dominate the production of high transverse momentum (pT) strange hadrons. At low pT, non-perturbative processes dominate the production of strange hadrons. In string fragmentation models the production of strange hadrons is generally suppressed relative to hadrons containing only light quarks, as the strange quark is heavier than up and down quarks. The amount of strangeness suppression in elementary (e+e and pp) collisions is an important parameter in Monte Carlo (MC) models. For this reason, measurements of strange hadron production place constraints on these models.

The abundances of strange particles relative to pions in heavy-ion collisions from top RHIC (Relativistic Heavy-Ion Collider) to LHC (Large Hadron Collider) energies do not show a significant dependence on either the initial volume (collision centrality) or the initial energy density (collision energy). With the exception of the most peripheral collisions, particle ratios are found to be compatible with those of a hadron gas in thermal and chemical equilibrium and can be described using a grand-canonical statistical model12, 13. In peripheral collisions, where the overlap of the colliding nuclei becomes very small, the relative yields of strange particles to pions decrease and tend toward those observed in pp collisions, for which a statistical-mechanics approach can also be applied14, 15. Extensions of a pure grand-canonical description of particle production, such as statistical models implementing strangeness canonical suppression16 and core–corona superposition17, 18 models, can effectively produce a suppression of strangeness production in small systems. However, the microscopic origin of enhanced strangeness production is not known, and the measurements presented in this Letter may contribute to its understanding. Several effects, such as azimuthal correlations and mass-dependent hardening of pT distributions, which in nuclear collisions are typically attributed to the formation of a strongly interacting quark–gluon medium, have been observed in high-multiplicity pp and proton–nucleus collisions at the LHC8, 9, 10, 11, 19, 20, 21, 22, 23, 24, 25. Yet, enhanced production of strange particles as a function of the charged-particle multiplicity density (dNch/dη) has so far not been observed in pp collisions. The study of pp collisions at high multiplicity is thus of considerable interest as it opens the exciting possibility of a microscopic understanding of phenomena known from nuclear reactions.

In this Letter, we present the multiplicity dependence of the production of primary strange ( ) and multi-strange ( ) hadrons in pp collisions at the centre-of-mass energy of . Primary particles are defined as all particles created in the collisions, except those coming from weak decays of light-flavour hadrons and of muons. The measurements have been performed at midrapidity (the particle rapidity is defined as y = (1/2)ln((E + pzc)/(Epzc)), where E is the energy and pz is the component of momentum along the beam axis), |y| < 0.5, with the ALICE detector26 at the LHC. Similar measurements of the multiplicity and centrality dependence of strange and multi-strange hadron production have been performed by ALICE in proton–lead (p–Pb) collisions at a centre-of-mass energy per nucleon pair (refs 10,11) and in lead–lead (Pb–Pb) collisions at (refs 6,27). The measurements reported here have been obtained in pp collisions at for events having at least one charged particle produced in the pseudorapidity (the particle pseudorapidity is defined as η = −ln(tan(θ/2)), where θ is the angle with respect to the beam axis) interval |η| < 1 (INEL > 0), corresponding to about 75% of the total inelastic cross-section. To study the multiplicity dependence of strange and multi-strange hadron production, the sample is divided into event classes based on the total ionization energy deposited in the forward detectors, covering the pseudorapidity regions 2.8 < η < 5.1 and −3.7 < η < −1.7.

Particle/antiparticle production yields are identical within uncertainties. The pT distributions of , and (in the following denoted as KS0, Λ, Ξ and Ω) are shown in Fig. 1 for a selection of event classes with progressively decreasing left fencedNch/dηright fence. The mean pseudorapidity densities of primary charged particles left fencedNch/dηright fence are measured at midrapidity, |η| < 0.5. The pT spectra become harder as the multiplicity increases, with the hardening being more pronounced for higher-mass particles. A similar observation was reported for p–Pb collisions10, where this and several other features common with Pb–Pb collisions are consistent with the appearance of collective behaviour at high multiplicity8, 11, 19, 20, 21, 22, 23. In heavy-ion collisions these observations are successfully described by models based on relativistic hydrodynamics. In this framework, the pT distributions are determined by particle emission from a collectively expanding thermal source28. The blast-wave model29 is employed to analyse the spectral shapes of KS0, Λ and Ξ in the common highest multiplicity class (class I). A simultaneous fit to all particles is performed following the approach discussed in ref. 10 in the pT ranges 0–1.5, 0.6–2.9 and 0.6–2.9GeV/c, for KS0, Λ and Ξ, respectively. The best fit describes the data to better than 5% in the respective fit ranges, consistent with particle production from a thermal source at temperature Tfo expanding with a common transverse velocity left fenceβTright fence. The resulting parameters, Tfo = 163 ± 10MeV and left fenceβTright fence = 0.49 ± 0.02, are remarkably similar to the ones obtained in p–Pb collisions for an event class with comparable left fencedNch/dηright fence (ref. 10).

Figure 1: pT-differential yields of KS0, , and measured in |y| < 0.5.
pT-differential yields of KS0, ,  and  measured in |y| < 0.5.

The results are shown for a selection of event classes, indicated by roman numbers in brackets, with decreasing multiplicity. The error bars show the statistical uncertainty, whereas the empty boxes show the total systematic uncertainty. The data are scaled by different factors to improve the visibility. The dashed curves represent Tsallis–Lévy fits to each individual distribution to extract integrated yields. The indicated uncertainties all represent standard deviations.

The pT-integrated yields are computed from the data in the measured ranges and using extrapolations to the unmeasured regions. To extrapolate to the unmeasured region, the data were fitted with a Tsallis–Lévy10 parametrization, which gives the best description of the individual spectra for all particles and all event classes over the full pT range (Fig. 1). Several other fit functions (Boltzmann,mT-exponential, pT-exponential, blast wave, Fermi–Dirac, Bose–Einstein) are employed to estimate the corresponding systematic uncertainties. The fraction of the extrapolated yield for the highest(lowest) multiplicity event class is about 10(25)%, 16(36)%, 27(47)% for Λ, Ξ and Ω, respectively, and is negligible for KS0. The uncertainty on the extrapolation amounts to about 2(6)%, 3(10)%, 4(13)% of the total yield for Λ, Ξ and Ω, respectively, and it is negligible for KS0. The total systematic uncertainty on the pT-integrated yields amounts to 5(9)%, 7(12)%, 6(14)% and 9(18)% for KS0, Λ, Ξ and Ω, respectively. A significant fraction of this uncertainty is common to all multiplicity classes and it is estimated to be about 5%, 6%, 6% and 9% for KS0, Λ, Ξ and Ω, respectively. In Fig. 2, the ratios of the yields of KS0, Λ, Ξ and Ω to the pion (π+ + π) yield as a function of left fencedNch/dηright fence are compared to p–Pb and Pb–Pb results at the LHC6, 10, 11. A significant enhancement of strange to non-strange hadron production is observed with increasing particle multiplicity in pp collisions. The behaviour observed in pp collisions resembles that of p–Pb collisions at a slightly lower centre-of-mass energy11, in terms of both the values of the ratios and their evolution with multiplicity. As no significant dependence on the centre-of-mass energy is observed at the LHC for inclusive inelastic collisions, the origin of strangeness production in hadronic collisions is apparently driven by the characteristics of the final state rather than by the collision system or energy. At high multiplicity, the yield ratios reach values similar to the ones observed in Pb–Pb collisions, where no significant change with multiplicity is observed beyond an initial slight rise. Note that the final-state average charged-particle density left fencedNch/dηright fence, which changes by over three orders of magnitude from low-multiplicity pp to central Pb–Pb, will in general be related to different underlying physics in the various reaction systems. For example, under the assumption that the initial reaction volume in both pp and p–Pb is determined mostly by the size of the proton, left fencedNch/dηright fence could be used as a proxy for the initial energy density. In Pb–Pb collisions, on the other hand, both the overlap area as well as the energy density could increase with left fencedNch/dηright fence. Nonetheless, it is a non-trivial observation that particle ratios in pp and p–Pb are identical at the same dNch/dη, representing an indication that the final-state particle density might indeed be a good scaling variable between these two systems.

Figure 2: pT-integrated yield ratios to pions (π+ + π) as a function of left fencedNch/dηright fence measured in |y| < 0.5.
pT-integrated yield ratios to pions ([pi]+ + [pi]-) as a function of [lang]dNch/d[eta][rang] measured in |y| < 0.5.

The error bars show the statistical uncertainty, whereas the empty and dark-shaded boxes show the total systematic uncertainty and the contribution uncorrelated across multiplicity bins, respectively. The values are compared to calculations from MC models30, 31, 32 and to results obtained in p–Pb and Pb–Pb collisions at the LHC6, 10, 11. For Pb–Pb results the ratio 2Λ/(π+ + π) is shown. The indicated uncertainties all represent standard deviations.

Figure 3 shows that the yield ratios and do not change significantly with multiplicity, demonstrating that the observed enhanced production rates of strange hadrons with respect to pions is not due to the difference in the hadron masses. The results in Figs 2 and 3 are compared to calculations from MC models commonly used for pp collisions at the LHC: PYTHIA830, EPOS LHC31 and DIPSY32. The kinematic domain and the multiplicity selections are the same for MC and data, namely, dividing the INEL > 0 sample into event classes based on the total charged-particle multiplicity in the forward region. The observation of a multiplicity-dependent enhancement of the production of strange hadrons along with the constant production of protons relative to pions cannot be simultaneously reproduced by any of the MC models commonly used at the LHC. The model which describes the data best, DIPSY, is a model where interaction between gluonic strings is allowed to form ‘colour ropes’ which are expected to produce more strange particles and baryons.

Figure 3: Particle yield ratios and as a function of left fencedNch/dηright fence.
Particle yield ratios  and  as a function of [lang]dNch/d[eta][rang].

The yield ratios are measured in the rapidity interval |y| < 0.5 . The error bars show the statistical uncertainty, whereas the empty and dark-shaded boxes show the total systematic uncertainty and the contribution uncorrelated across multiplicity bins, respectively. The values are compared to calculations from MC models30, 31, 32 in pp collisions at and to results obtained in p–Pb collisions at the LHC10. The indicated uncertainties all represent standard deviations.

To illustrate the evolution of the production of strange hadrons with multiplicity, Fig. 4 presents the yield ratios to pions divided by the values measured in the inclusive INEL > 0 pp sample, both for pp and p–Pb collisions. The observed multiplicity-dependent enhancement with respect to the INEL > 0 sample follows a hierarchy determined by the hadron strangeness. We have attempted to describe the observed strangeness hierarchy by fitting the data presented in Fig. 4 and the empirical function of the form

where S is the number of strange or anti-strange valence quarks in the hadron, (h/π)INEL>0pp and left fencedNch/dηright fenceINEL>0pp are the measured hadron-to-pion ratio and the charged-particle multiplicity density in INEL > 0 pp collisions, respectively, and a and b are free parameters. The fit describes the data well, yielding a = 0.083 ± 0.006, b = 1.67 ± 0.09, with a χ2/ndf of 0.66.

Figure 4: Particle yield ratios to pions normalized to the values measured in the inclusive INEL > 0 pp sample.
Particle yield ratios to pions normalized to the values measured in the inclusive INEL > 0 pp sample.

The results are shown for pp and p–Pb collisions, both normalized to the inclusive INEL > 0 pp sample. The error bars show the statistical uncertainty. The common systematic uncertainties cancel in the double ratio. The empty boxes represent the remaining uncorrelated uncertainties. The lines represent a simultaneous fit of the results with the empirical scaling formula in equation (1). The indicated uncertainties all represent standard deviations.

In summary, we have presented the multiplicity dependence of the production of primary strange (KS0, Λ, ) and multi-strange (Ξ, , Ω, ) hadrons in pp collisions at . The results are obtained as a function of left fencedNch/dηright fence measured at midrapidity for event classes selected on the basis of the total charge deposited in the forward region. The pT spectra become harder as the multiplicity increases. The mass and multiplicity dependences of the spectral shapes are reminiscent of the patterns seen in p–Pb and Pb–Pb collisions at the LHC, which can be understood assuming a collective expansion of the system in the final state. The data show for the first time in pp collisions that the pT-integrated yields of strange and multi-strange particles relative to pions increase significantly with multiplicity. These particle ratios are similar to those found in p–Pb collisions at the same multiplicity densities11. The observed enhancement increases with strangeness content rather than with mass or baryon number of the hadron. Such behaviour cannot be reproduced by any of the MC models commonly used, suggesting that further developments are needed to obtain a complete microscopic understanding of strangeness production, and indicating the presence of a phenomenon novel in high-multiplicity pp collisions. The evolution of strangeness enhancement seen at the LHC steadily increases as a function of left fencedNch/dηright fence from low-multiplicity pp to high multiplicity p–Pb and reaches the values observed in Pb–Pb collisions. This may point towards a common underlying physics mechanism which gradually compensates the strangeness suppression in fragmentation. Further studies extending to higher multiplicity in small systems are essential, as they would demonstrate whether strangeness production saturates at the thermal equilibrium values predicted by the grand-canonical statistical model12, 13 or continues to increase. The remarkable similarity of strange particle production in pp, p–Pb and Pb–Pb collisions adds to previous measurements in pp, which also exhibit characteristic features known from high-energy heavy-ion collisions8, 9, 10, 11, 19, 20, 21, 22, 23, 25 and are understood to be connected to the formation of a deconfined QCD phase at high temperature and energy density.

Methods

A detailed description of the ALICE detector and of its performance can be found in refs 26,33. We briefly outline the main detectors utilized for this analysis. The V0 detectors are two scintillator hodoscopes employed for triggering, background suppression and event-class determination. They are placed on either side of the interaction region at z = 3.3m and z = −0.9m, covering the pseudorapidity regions 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. Vertex reconstruction, central-barrel tracking and charged-hadron identification are performed with the Inner Tracking System (ITS) and the Time-Projection Chamber (TPC), which are located inside a solenoidal magnet providing a 0.5T magnetic field. The ITS is composed of six cylindrical layers of high-resolution silicon tracking detectors. The innermost layers consist of two arrays of hybrid silicon pixel detectors (SPD) located at average radii 3.9 and 7.6cm from the beam axis and covering |η| < 2.0 and |η| < 1.4, respectively. The TPC is a large cylindrical drift detector of radial and longitudinal size of about 85 < r < 250cm and −250 < z < 250cm, respectively. It provides charged-hadron identification information via ionization energy loss in the fill gas.

The data were collected in 2010 using a minimum-bias trigger requiring a hit in either the V0 scintillators or in the SPD detector, in coincidence with the arrival of proton bunches from both directions. The contamination from beam-induced background is removed offline by using the timing information and correlations in the V0 and SPD detectors, as discussed in detail in ref. 33. Events used for the data analysis are further required to have a reconstructed vertex within |z| < 10cm. Events containing more than one distinct vertex are tagged as pileup and are discarded. The remaining pileup fraction is estimated to be negligible, ranging from about 10−4 to 10−2 for the lowest and highest multiplicity classes, respectively. A total of about 100 million events has been utilized for the analysis.

The mean pseudorapidity densities of primary charged particles left fencedNch/dηright fence are measured at midrapidity, |η| < 0.5, for each event class using the technique described in ref. 34. The left fencedNch/dηright fence values, corrected for acceptance and efficiency, as well as for contamination from secondary particles and combinatorial background, are listed in Table 1. The relative RMS width of the corresponding multiplicity distributions ranges from 68% to 30% for the lowest and highest multiplicity classes, respectively. The corresponding fractions of the INEL > 0 cross-section are also summarized inTable 1.

Table 1: Event multiplicity classes, their corresponding fraction of the INEL > 0 cross-section (σ/σINEL > 0) and their corresponding left fencedNch/dηright fence at midrapidity (|η| < 0.5).

Strange KS0, Λ and and multi-strange Ξ, , Ω and candidates are reconstructed via topological selection criteria and invariant-mass analysis of their characteristic weak decays35 (BR is branching ratio):

Details on the analysis technique are described in refs 10,36,37. The results are corrected for detector acceptance and reconstruction efficiency calculated using events from the PYTHIA6 (tune Perugia 0) MC generator38 with particle transport performed via a GEANT3 (ref. 39) simulation of the ALICE detector. The contamination to Λ ( ) yields from weak decays of charged and neutral Ξ baryons (feed-down) is subtracted using a data-driven approach10. The study of systematic uncertainties follows the analysis described in refs 10,36,37. Contributions common to all event classes (Nch-independent) are estimated and removed to determine the remaining uncertainties which are uncorrelated across different multiplicity intervals. The main sources of systematic uncertainty and their corresponding values are summarized in Table 2. The results on pion and proton production have been obtained following the analysis method discussed in ref. 40.

Table 2: Main sources and values of the relative systematic uncertainties (standard deviations expressed in %) of the pT-differential yields.

Data availability.

All data shown in histograms and plots are publicly available from HEPdata (https://hepdata.net).

Additional Information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Shuryak, E. V. Quantum chromodynamics and the theory of superdense matter. Phys. Rep. 61, 71158 (1980).
  2. Andersen, E. et al. (WA97 Collaboration) Strangeness enhancement at mid-rapidity in Pb–Pb collisions at 158 AGeV/c. Phys. Lett. B 449, 401406 (1999).
  3. Afanasiev, S. V. et al. (NA49 Collaboration) Ξ and production in central Pb+Pb collisions at 158 GeV/c per nucleon. Phys. Lett. B 538, 275281 (2002).
  4. Antinori, F. et al. (NA57 Collaboration) Energy dependence of hyperon production in nucleus–nucleus collisions at SPS. Phys. Lett. B 595, 6874 (2004).
  5. Abelev, B. I. et al. (STAR Collaboration) Enhanced strange baryon production in Au+Au collisions compared to p+p at . Phys. Rev. C 77, 044908 (2008).
  6. Abelev, B. et al. (ALICE Collaboration) Multi-strange baryon production at mid-rapidity in Pb–Pb collisions at . Phys. Lett. B 728, 216227 (2014); erratum 734, 409 (2014).
  7. Koch, P., Muller, B. & Rafelski, J. Strangeness in relativistic heavy ion collisions. Phys. Rep. 142, 167262 (1986).
  8. Khachatryan, V. et al. (CMS Collaboration) Observation of long-range near-side angular correlations in proton–proton collisions at the LHC. JHEP 9, 091 (2010).
  9. Khachatryan, V. et al. (CMS Collaboration) Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765, 193220 (2017).
  10. Abelev, B. et al. (ALICE Collaboration) Multiplicity dependence of pion, kaon, proton and lambda production in p–Pb collisions at . Phys. Lett. B 728, 2538 (2014).
  11. Adam, J. et al. (ALICE Collaboration) Multi-strange baryon production in p–Pb collisions at . Phys. Lett. B 758, 389401 (2016).
  12. Cleymans, J., Kraus, I., Oeschler, H., Redlich, K. & Wheaton, S. Statistical model predictions for particle ratios at . Phys. Rev. C 74, 034903 (2006).
  13. Andronic, A., Braun-Munzinger, P. & Stachel, J. Thermal hadron production in relativistic nuclear collisions: the hadron mass spectrum, the horn, and the QCD phase transition. Phys. Lett. B 673, 142145 (2009); erratum 678, 516 (2009).
  14. Hagedorn, R. & Ranft, J. Statistical thermodynamics of strong interactions at high-energies. 2. Momentum spectra of particles produced in pp-collisions. Nuovo Cimento Suppl. 6, 169354 (1968).
  15. Becattini, F. & Heinz, U. W. Thermal hadron production in p p and p anti-p collisions. Z. Phys. C 76, 269286 (1997); erratum 76, 578 (1997).
  16. Redlich, K. & Tounsi, A. Strangeness enhancement and energy dependence in heavy ion collisions. Eur. Phys. J. C 24, 589594 (2002).
  17. Becattini, F. & Manninen, J. Strangeness production from SPS to LHC. J. Phys. G 35, 104013 (2008).
  18. Aichelin, J. & Werner, K. Centrality dependence of strangeness enhancement in ultrarelativistic heavy ion collisions: a core–corona effect. Phys. Rev. C 79, 064907 (2009); erratum 81, 029902 (2010).
  19. Chatrchyan, S. et al. (CMS Collaboration) Observation of long-range near-side angular correlations in proton-lead collisions at the LHC. Phys. Lett. B 718, 795814 (2013).
  20. Abelev, B. et al. (ALICE Collaboration) Long-range angular correlations on the near and away side in p–Pb collisions at . Phys. Lett. B 719, 2941 (2013).
  21. Aad, G. et al. (ATLAS Collaboration) Observation of associated near-side and away-side long-range correlations in proton-lead collisions with the ATLAS detector. Phys. Rev. Lett. 110, 182302 (2013).
  22. Aad, G. et al. (ATLAS Collaboration) Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at . Phys. Lett. B 725, 6078 (2013).
  23. Chatrchyan, S. et al. (CMS Collaboration) Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724, 213240 (2013).
  24. Abelev, B. B. et al. (ALICE Collaboration) Long-range angular correlations of π, K and p in p–Pb collisions at . Phys. Lett. B 726, 164177 (2013).
  25. Khachatryan, V. et al. (CMS Collaboration) Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC. Phys. Lett. B 768, 103129 (2017).
  26. Aamodt, K. et al. (ALICE Collaboration) The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008).
  27. Abelev, B. et al. (ALICE Collaboration) KS0 and Λ production in Pb–Pb collisions at . Phys. Rev. Lett. 111, 222301 (2013).
  28. Heinz, U. W. Concepts of heavy ion physics. In Proc. 2003 CERN-CLAF School of High-Energy Physics (ed. Ellis, N.) 165–238 (CERN, 2004); https://inspirehep.net/record/714564
  29. Schnedermann, E., Sollfrank, J. & Heinz, U. W. Thermal phenomenology of hadrons from 200 A/GeV S+S collisions. Phys. Rev. C 48, 24622475 (1993).
  30. Sjöstrand, T., Mrenna, S. & Skands, P. Z. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852867 (2008).
  31. Pierog, T., Karpenko, I., Katzy, J., Yatsenko, E. & Werner, K. EPOS LHC: test of collective hadronization with LHC data. Phys. Rev. C 92, 034906 (2015).
  32. Bierlich, C. & Christiansen, J. R. Effects of colour reconnection on hadron flavour observables. Phys. Rev. D 92, 094010 (2015).
  33. Abelev, B. et al. (ALICE Collaboration) Performance of the ALICE experiment at the CERN LHC. Int. J. Mod. Phys. A 29, 1430044 (2014).
  34. Abelev, B. et al. (ALICE Collaboration) Pseudorapidity density of charged particles in p+Pb collisions at . Phys. Rev. Lett. 110, 032301 (2013).
  35. Olive, K. A. et al. (Particle Data Group Collaboration) Review of particle physics. Chin. Phys. C 38, 090001 (2014).
  36. Aamodt, K. et al. (ALICE Collaboration) Strange particle production in proton–proton collisions at with ALICE at the LHC. Eur. Phys. J. C 71, 1594 (2011).
  37. Abelev, B. et al. (ALICE Collaboration) Multi-strange baryon production in pp collisions at with ALICE. Phys. Lett. B 712, 309318 (2012).
  38. Skands, P. Z. Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010).
  39. Brun, R. et al. GEANT Detector Description and Simulation Tool (CERN, 1993); http://cds.cern.ch/record/1082634
  40. Adam, J. et al. (ALICE Collaboration) Measurement of pion, kaon and proton production in proton-proton collisions at . Eur. Phys. J. C 75, 226 (2015).

Download references

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC)”; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico(DGAPA), México, Amerique Latine Formation academique - European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Católica del Perú; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand; Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

Author information

Affiliations

  1. A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

    • A. Grigoryan &
    • V. Papikyan
  2. Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

    • H. Bello Martinez,
    • I. Cortés Maldonado,
    • A. Fernández Téllez,
    • M. I. Martínez,
    • L. A. P. Moreno,
    • S. R. Navarro,
    • J. C. C. Noris,
    • M. Rodríguez Cahuantzi,
    • G. Tejeda Muñoz,
    • A. Vargas,
    • S. Vergara Limón &
    • A. Villatoro Tello
  3. Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

    • A. Alkin,
    • V. Chelnokov,
    • B. Grinyov,
    • S. Senyukov,
    • O. Shadura,
    • V. Trubnikov,
    • V. Yurchenko &
    • G. Zinovjev
  4. Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

    • R. Biswas,
    • S. Biswas,
    • S. Das,
    • S. K. Ghosh,
    • S. K. Prasad &
    • S. Raha
  5. Budker Institute for Nuclear Physics, Novosibirsk, Russia

    • Y. Pestov
  6. California Polytechnic State University, San Luis Obispo California, USA

    • J. L. Klay
  7. Central China Normal University, Wuhan, China

    • M. An,
    • P. Bartalini,
    • X. Cai,
    • C. Gao,
    • S. Li,
    • Y. Mao,
    • P. Palni,
    • H. Pei,
    • X. Peng,
    • X. Ren,
    • Q. Shou,
    • Z. Song,
    • M. Wang,
    • P. Yang,
    • Z. Yin,
    • H. Zhang,
    • X. Zhang,
    • Y. Zhang,
    • Z. Zhang,
    • D. Zhou,
    • H. Zhu &
    • J. Zhu
  8. Centre de Calcul de l’IN2P3, Villeurbanne, France

    • R. Vernet
  9. Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

    • C. Ceballos Sanchez,
    • E. López Torres &
    • K. Shtejer
  10. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

    • M. A. Diaz Corchero,
    • V. Gonzalez,
    • P. González-Zamora,
    • E. Montes,
    • A. J. Rubio Montero &
    • E. Serradilla
  11. Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

    • R. Cruz Albino,
    • G. Herrera Corral,
    • P. Ladron de Guevara &
    • L. Montaño Zetina
  12. Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy

    • A. Alici,
    • L. Cifarelli,
    • A. De Caro,
    • D. De Gruttola,
    • F. Noferini &
    • A. Zichichi
  13. Chicago State University, Chicago, Illinois, USA

    • E. Garcia-Solis &
    • A. Harton
  14. China Institute of Atomic Energy, Beijing, China

    • X. Li
  15. Commissariat à l’Energie Atomique, IRFU, Saclay, France

    • A. Baldisseri,
    • H. Borel,
    • J. Castillo Castellanos,
    • J. L. Charvet,
    • V. J. G. Feuillard,
    • A. Lardeux,
    • H. Pereira Da Costa &
    • A. Rakotozafindrabe
  16. COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

    • J. B. Butt,
    • M. U. Naru,
    • M. Suleymanov,
    • U. Tabassam &
    • A. Zaman
  17. Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

    • E. G. Ferreiro
  18. Department of Physics and Technology, University of Bergen, Bergen, Norway

    • J. Alme,
    • S. Altinpinar,
    • Ø. Djuvsland,
    • P. I. Loenne,
    • J. Nystrand,
    • A. Rehman,
    • D. Röhrich,
    • G. J. Tambave,
    • K. Ullaland,
    • A. Velure,
    • B. Wagner,
    • H. Zhang,
    • Z. Zhou &
    • H. Zhu
  19. Department of Physics, Aligarh Muslim University, Aligarh, India

    • S. Ahmad,
    • M. D. Azmi,
    • T. Hussain,
    • M. Irfan,
    • M. Mohisin Khan,
    • A. Khatun &
    • M. Tariq
  20. Department of Physics, Ohio State University, Columbus, Ohio, USA

    • J. T. Buxton,
    • T. J. Humanic,
    • A. M. Kubera,
    • M. A. Lisa &
    • J. Salzwedel
  21. Department of Physics, Sejong University, Seoul, South Korea

    • D. S. Hwang &
    • S. Kim
  22. Department of Physics, University of Oslo, Oslo, Norway

    • I. C. Arsene,
    • P. C. Batzing,
    • O. Dordic,
    • S. Lindal,
    • S. M. Mahmood,
    • J. Milosevic,
    • H. Qvigstad,
    • M. Richter,
    • K. Røed,
    • T. B. Skaali,
    • T. S. Tveter,
    • J. Wikne &
    • C. Zhao
  23. Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN Rome, Italy

    • F. Meddi
  24. Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy

    • E. A. R. Casula,
    • A. De Falco,
    • F. M. Fionda,
    • E. Incani,
    • G. Puddu &
    • G. L. Usai
  25. Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy

    • P. Camerini,
    • R. Lea,
    • G. Luparello,
    • G. V. Margagliotti,
    • R. Rui &
    • M. Suljic
  26. Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy

    • A. M. Barbano,
    • S. Beole,
    • E. Botta,
    • Y. Corrales Morales,
    • A. Ferretti,
    • G. G. Fronze,
    • M. Gagliardi,
    • M. Gallio,
    • A. Lattuca,
    • M. Leoncino,
    • M. Marchisone,
    • M. Masera,
    • M. Puccio,
    • I. Ravasenga,
    • R. Russo,
    • K. Shtejer,
    • S. Trogolo &
    • E. Vercellin
  27. Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy

    • S. Arcelli,
    • M. Basile,
    • F. Bellini,
    • F. Carnesecchi,
    • L. Cifarelli,
    • M. Colocci,
    • B. Guerzoni,
    • N. Jacazio,
    • G. Scioli &
    • A. Zichichi
  28. Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy

    • R. Barbera,
    • K. Garg,
    • P. La Rocca,
    • C. Petta &
    • F. Riggi
  29. Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy

    • A. Festanti,
    • P. Giubilato,
    • C. Jena,
    • M. Lunardon,
    • S. Moretto,
    • A. Rossi,
    • F. Scarlassara,
    • F. Soramel &
    • C. Terrevoli
  30. Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy

    • A. De Caro,
    • D. De Gruttola,
    • S. De Pasquale,
    • M. Fusco Girard,
    • E. Meninno,
    • P. Pagano &
    • T. Virgili
  31. Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy

    • P. Cortese,
    • L. Ramello &
    • M. Sitta
  32. Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

    • M. Agnello &
    • S. Bufalino
  33. Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy

    • F. Barile,
    • G. E. Bruno,
    • F. Colamaria,
    • D. Di Bari,
    • E. M. Fiore,
    • A. Mastroserio,
    • M. Mazzilli,
    • G. Trombetta &
    • G. Volpe
  34. Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

    • P. Christiansen,
    • H. M. Ljunggren,
    • A. Oskarsson,
    • T. Richert,
    • D. Silvermyr,
    • E. Stenlund &
    • V. Vislavicius
  35. Eberhard Karls Universität Tübingen, Tübingen, Germany

    • B. A. Hess,
    • H. R. Schmidt,
    • M. Schmidt &
    • J. Wiechula
  36. European Organization for Nuclear Research (CERN), Geneva, Switzerland

    • G. Aglieri Rinella,
    • A. Augustinus,
    • L. S. Barnby,
    • K. Barth,
    • D. Berzano,
    • L. Betev,
    • M. Bonora,
    • S. Bufalino,
    • P. Buncic,
    • D. Caffarri,
    • F. Carena,
    • W. Carena,
    • S. Chapeland,
    • V. Chibante Barroso,
    • P. Chochula,
    • D. Colella,
    • F. Costa,
    • L. Cunqueiro,
    • A. Di Mauro,
    • R. Divià,
    • M. Floris,
    • A. Francescon,
    • U. Fuchs,
    • C. Gargiulo,
    • M. Gheata,
    • P. Giubellino,
    • A. S. Gonzalez,
    • A. Grigoras,
    • C. Grigoras,
    • J. F. Grosse-Oetringhaus,
    • R. Haake,
    • H. Hillemanns,
    • P. Hristov,
    • M. Ivanov,
    • A. Kalweit,
    • M. Keil,
    • J. Klein,
    • A. Kluge,
    • M. Kofarago,
    • C. Kouzinopoulos,
    • E. Kryshen,
    • I. Lakomov,
    • E. Laudi,
    • M. Lupi,
    • M. Mager,
    • V. Manzari,
    • P. Martinengo,
    • M. Martinez Pedreira,
    • L. Milano,
    • A. Morsch,
    • L. Musa,
    • R. A. Negrao De Oliveira,
    • J. Niedziela,
    • A. Ohlson,
    • O. Pinazza,
    • R. Preghenella,
    • F. Reidt,
    • P. Riedler,
    • W. Riegler,
    • F. Ronchetti,
    • K. Šafařík,
    • J. Schukraft,
    • Y. Schutz,
    • S. Senyukov,
    • R. Shahoyan,
    • K. M. Sielewicz,
    • G. Simonetti,
    • A. Tauro,
    • A. Telesca,
    • J. W. Van Hoorne,
    • P. Vande Vyvre,
    • B. von Haller,
    • D. Vranic,
    • M. Weber,
    • C. Zampolli &
    • M. B. Zimmermann
  37. Excellence Cluster Universe, Technische Universität München, Munich, Germany

    • O. W. Arnold,
    • A. Bilandzic,
    • A. Chauvin,
    • T. Dahms,
    • L. Fabbietti,
    • P. Gasik,
    • K. Lapidus,
    • R. H. Munzer,
    • O. Vázquez Doce &
    • I. Vorobyev
  38. Faculty of Engineering, Bergen University College, Bergen, Norway

    • J. Alme,
    • H. Helstrup,
    • K. F. Hetland &
    • B. Kileng
  39. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

    • M. Meres,
    • M. Pikna,
    • B. Sitar,
    • P. Strmen,
    • A. Szabo &
    • I. Szarka
  40. Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

    • J. Adam,
    • J. Bielčík,
    • M. Broz,
    • J. Cepila,
    • J. G. Contreras,
    • G. Eyyubova,
    • D. Horak &
    • V. Petráček
  41. Faculty of Science, P.J. Šafárik University, Košice, Slovakia

    • M. Bombara,
    • A. Kravčáková,
    • M. Šefčík &
    • J. Vrláková
  42. Faculty of Technology, Buskerud and Vestfold University College, Vestfold, Norway

    • R. Langoy &
    • J. Lien
  43. Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

    • T. Alt,
    • J. de Cuveland,
    • S. Gorbunov,
    • D. Hutter,
    • S. Kirsch,
    • I. Kisel,
    • M. Krzewicki,
    • S. L. La Pointe,
    • V. Lindenstruth,
    • D. Rohr &
    • M. Zyzak
  44. Gangneung-Wonju National University, Gangneung, South Korea

    • D. W. Kim &
    • J. S. Kim
  45. Gauhati University, Department of Physics, Guwahati, India

    • B. Bhattacharjee,
    • N. Hussain &
    • P. Sarma
  46. Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

    • K. Münning
  47. Helsinki Institute of Physics (HIP), Helsinki, Finland

    • E. J. Brucken,
    • M. M. Mieskolainen,
    • R. Orava,
    • S. S. Räsänen &
    • S. Saarinen
  48. Hiroshima University, Hiroshima, Japan

    • T. Okubo,
    • D. Sekihata,
    • K. Shigaki,
    • T. Sugitate &
    • S. Yano
  49. Indian Institute of Technology Bombay (IIT), Mumbai, India

    • N. Agrawal,
    • S. Dash,
    • P. Dhankher,
    • M. B. Jadhav,
    • G. Koyithatta Meethaleveedu,
    • J. Kumar,
    • S. Kumar,
    • B. Naik,
    • B. K. Nandi,
    • R. Nayak,
    • A. K. Pandey &
    • R. Varma
  50. Indian Institute of Technology Indore, Indore (IITI), India

    • A. N. Mishra,
    • P. Pareek,
    • A. Roy,
    • P. Sahoo,
    • R. Sahoo &
    • D. Thakur
  51. Indonesian Institute of Sciences, Jakarta, Indonesia

    • S. Sumowidagdo
  52. Inha University, Incheon, South Korea

    • N. K. Behera,
    • S. Cho,
    • M. J. Kweon &
    • J. H. Yoon
  53. Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France

    • Z. Conesa del Valle,
    • J. Crkovska,
    • B. Espagnon,
    • C. Hadjidakis,
    • C. Suire &
    • M. Tarhini
  54. Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

    • T. Breitner,
    • H. Engel,
    • A. Gomez Ramirez,
    • U. Kebschull &
    • C. Lara
  55. Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

    • H. Appelshäuser,
    • M. Arslandok,
    • R. Bailhache,
    • E. Bartsch,
    • H. Beck,
    • C. Blume,
    • J. Book,
    • T. A. Broker,
    • H. Buesching,
    • P. Dillenseger,
    • B. Dönigus,
    • T. Drozhzhova,
    • I. Erdemir,
    • S. T. Heckel,
    • E. Hellbär,
    • C. Klein,
    • P. Luettig,
    • M. Marquard,
    • R. H. Munzer,
    • M. Ozdemir,
    • E. Perez Lezama,
    • V. Peskov,
    • B. T. Rascanu,
    • P. Reichelt,
    • R. Renfordt,
    • B. Sahlmuller,
    • S. Schuchmann &
    • A. Toia
  56. Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany

    • B. Bathen,
    • L. Cunqueiro,
    • L. Feldkamp,
    • R. Haake,
    • F. Herrmann,
    • C. Klein-Bösing,
    • D. A. Moreira De Godoy,
    • D. Mühlheim,
    • A. Passfeld,
    • H. Poppenborg,
    • J. P. Wessels,
    • U. Westerhoff,
    • G. A. Willems &
    • M. B. Zimmermann
  57. Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France

    • I. Belikov,
    • J. C. Hamon,
    • B. Hippolyte,
    • C. Kuhn,
    • A. Maire,
    • L. Molnar,
    • F. Rami &
    • C. Roy
  58. Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

    • D. Finogeev,
    • A. Furs,
    • F. Guber,
    • V. Isakov,
    • O. Karavichev,
    • T. Karavicheva,
    • E. Karpechev,
    • A. Konevskikh,
    • A. Kurepin,
    • A. B. Kurepin,
    • A. Maevskaya,
    • I. Pshenichnov,
    • A. Reshetin,
    • A. Shabanov &
    • A. Tikhonov
  59. Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands

    • R. A. Bertens,
    • S. Bjelogrlic,
    • A. Caliva,
    • A. Dubla,
    • A. Grelli,
    • D. L. D. Keijdener,
    • E. Leogrande,
    • D. F. Lodato,
    • J. Margutti,
    • A. Mischke,
    • N. Mohammadi,
    • G. Nooren,
    • T. Peitzmann,
    • R. J. M. Snellings,
    • J. Van Der Maarel,
    • M. van Leeuwen,
    • A. M. Veen,
    • H. Wang &
    • C. Zhang
  60. Institute for Theoretical and Experimental Physics, Moscow, Russia

    • A. Akindinov,
    • S. Kiselev,
    • D. Mal’Kevich,
    • K. Mikhaylov,
    • A. Nedosekin,
    • R. Sultanov,
    • K. Voloshin &
    • N. Zhigareva
  61. Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

    • D. Colella,
    • J. Jadlovsky,
    • P. Kalinak,
    • I. Králik,
    • M. Krivda,
    • J. Musinsky,
    • L. Šándor &
    • M. Vala
  62. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

    • J. Mareš &
    • P. Závada
  63. Institute of Physics, Bhubaneswar, India

    • R. C. Baral,
    • T. Mishra,
    • S. Sahoo,
    • P. K. Sahu &
    • S. Swain
  64. Institute of Space Science (ISS), Bucharest, Romania

    • A. Danu,
    • A. Dobrin,
    • M. Gheata,
    • M. Haiduc,
    • C. M. Mitu,
    • M. Niculescu,
    • C. Ristea,
    • A. Sevcenco,
    • I. Stan &
    • I. S. Zgura
  65. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

    • E. Cuautle,
    • I. Maldonado Cervantes,
    • L. Nellen,
    • A. Ortiz Velasquez &
    • G. Paić
  66. Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

    • R. Alfaro Molina,
    • E. Belmont-Moreno,
    • D. M. Goméz Coral,
    • V. Grabski,
    • H. León Vargas,
    • A. Menchaca-Rocha,
    • A. Sandoval &
    • E. Serradilla
  67. iThemba LABS, National Research Foundation, Somerset West, South Africa

    • F. Bossú,
    • Z. Buthelezi,
    • S. Foertsch,
    • M. Marchisone,
    • S. Murray,
    • K. Senosi &
    • G. Steyn
  68. Joint Institute for Nuclear Research (JINR), Dubna, Russia

    • B. Batyunya,
    • S. Grigoryan,
    • L. Malinina,
    • K. Mikhaylov,
    • P. Nomokonov,
    • E. Rogochaya,
    • A. Vodopyanov &
    • S. Zaporozhets
  69. Konkuk University, Seoul, South Korea

    • Y. W. Baek &
    • S. K. Oh
  70. Korea Institute of Science and Technology Information, Daejeon, South Korea

    • S. U. Ahn
  71. KTO Karatay University, Konya, Turkey

    • A. Karasu Uysal,
    • A. Okatan &
    • S. Yalcin
  72. Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France

    • V. Barret,
    • N. Bastid,
    • A. Batista Camejo,
    • P. Crochet,
    • P. Dupieux,
    • V. J. G. Feuillard,
    • S. Li,
    • X. Lopez,
    • F. Manso,
    • S. Porteboeuf-Houssais,
    • P. Rosnet,
    • L. Valencia Palomo &
    • B. Vulpescu
  73. Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

    • G. Conesa Balbastre,
    • J. Faivre,
    • C. Furget,
    • R. Guernane,
    • C. Silvestre &
    • A. Vauthier
  74. Laboratori Nazionali di Frascati, INFN, Frascati, Italy

    • N. Bianchi,
    • L. Calero Diaz,
    • P. Di Nezza,
    • A. Fantoni,
    • P. Gianotti,
    • V. Muccifora,
    • A. R. Reolon,
    • F. Ronchetti,
    • S. Sakai &
    • E. Spiriti
  75. Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy

    • R. A. Ricci
  76. Lawrence Berkeley National Laboratory, Berkeley, California, USA

    • F. Bock,
    • A. Collu,
    • M. Fasel,
    • D. R. Gangadharan,
    • B. Jacak,
    • P. M. Jacobs,
    • C. Loizides,
    • L. Milano,
    • M. Płoskoń,
    • J. Porter,
    • J. Thäder &
    • X. Zhang
  77. Moscow Engineering Physics Institute, Moscow, Russia

    • V. Belyaev,
    • A. Bogdanov,
    • V. Grigoriev,
    • M. Ippolitov,
    • V. Kaplin,
    • N. Kondratyeva,
    • V. Loginov,
    • Y. Melikyan,
    • D. Peresunko &
    • V. Samsonov
  78. Nagasaki Institute of Applied Science, Nagasaki, Japan

    • K. Oyama
  79. National Centre for Nuclear Studies, Warsaw, Poland

    • A. Deloff,
    • O. Kovalenko,
    • P. Kurashvili,
    • R. Nair,
    • K. Redlich,
    • T. Siemiarczuk &
    • G. Wilk
  80. National Institute for Physics and Nuclear Engineering, Bucharest, Romania

    • C. Andrei,
    • I. Berceanu,
    • A. Bercuci,
    • A. Herghelegiu,
    • M. Petrovici,
    • A. Pop,
    • C. Schiaua &
    • M. G. Tarzila
  81. National Institute of Science Education and Research, Bhubaneswar, India

    • S. Biswas,
    • A. Dash,
    • B. Mohanty,
    • K. Nayak &
    • R. Singh
  82. National Research Centre Kurchatov Institute, Moscow, Russia

    • D. Aleksandrov,
    • D. Blau,
    • S. Fokin,
    • M. Ippolitov,
    • V. Manko,
    • S. Nikolaev,
    • S. Nikulin,
    • A. Nyanin,
    • D. Peresunko,
    • E. Ryabinkin,
    • Y. Sibiriak,
    • A. Vasiliev &
    • A. Vinogradov
  83. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    • I. G. Bearden,
    • A. Bilandzic,
    • H. Bøggild,
    • C. Bourjau,
    • M. Chojnacki,
    • C. H. Christensen,
    • J. J. Gaardhøje,
    • K. Gajdosova,
    • K. Gulbrandsen,
    • B. S. Nielsen,
    • L. O. D. L. Pimentel,
    • V. Zaccolo &
    • Y. Zhou
  84. Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands

    • P. Christakoglou,
    • C. Deplano,
    • A. Dobrin,
    • P. G. Kuijer,
    • F. Lehas &
    • A. Rodriguez Manso
  85. Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, UK

    • M. Borri &
    • R. C. Lemmon
  86. Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic

    • D. Adamová,
    • J. Bielčíková,
    • J. Ferencei,
    • F. Krizek,
    • V. Kučera,
    • J. Pospisil,
    • M. Šumbera &
    • T. Vanat
  87. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    • T. M. Cormier,
    • M. G. Poghosyan,
    • K. F. Read &
    • P. Stankus
  88. Petersburg Nuclear Physics Institute, Gatchina, Russia

    • Y. Berdnikov,
    • V. Ivanov,
    • A. Khanzadeev,
    • E. Kryshen,
    • M. Malaev,
    • V. Nikulin,
    • V. Riabov,
    • Y. Ryabov,
    • V. Samsonov &
    • M. Zhalov
  89. Physics Department, Creighton University, Omaha, Nebraska, USA

    • M. Cherney &
    • J. E. Seger
  90. Physics Department, Panjab University, Chandigarh, India

    • M. M. Aggarwal,
    • A. K. Bhati,
    • L. Kumar,
    • S. Parmar &
    • D. Rathee
  91. Physics Department, University of Athens, Athens, Greece

    • P. Ganoti,
    • F. Roukoutakis,
    • M. Spyropoulou-Stassinaki &
    • M. Vasileiou
  92. Physics Department, University of Cape Town, Cape Town, South Africa

    • J. Cleymans,
    • T. Dietel,
    • S. Mhlanga &
    • A. M. Whitehead
  93. Physics Department, University of Jammu, Jammu, India

    • R. Bala,
    • A. Bhasin,
    • I. R. Bhat,
    • A. Gupta,
    • R. Gupta,
    • M. Kour,
    • A. Kumar,
    • S. Mahajan,
    • S. Rajput,
    • S. Sambyal,
    • A. Sharma &
    • M. Sharma
  94. Physics Department, University of Rajasthan, Jaipur, India

    • R. Raniwala &
    • S. Raniwala
  95. Physik Department, Technische Universität München, Munich, Germany

    • O. W. Arnold,
    • A. Bilandzic,
    • A. Chauvin,
    • T. Dahms,
    • L. Fabbietti,
    • P. Gasik,
    • R. H. Munzer,
    • O. Vázquez Doce &
    • I. Vorobyev
  96. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

    • V. Anguelov,
    • H. Beck,
    • F. Bock,
    • M. C. Danisch,
    • A. Deisting,
    • P. Glässel,
    • L. Karayan,
    • J. Kim,
    • S. Klewin,
    • M. L. Knichel,
    • L. Leardini,
    • J. Mercado Pérez,
    • H. Oeschler,
    • K. Oyama,
    • Y. Pachmayer,
    • F. Reidt,
    • K. Reygers,
    • R. Schicker,
    • S. Schuchmann,
    • J. Stachel,
    • J. H. Stiller,
    • M. A. Völkl,
    • D. F. Weiser,
    • J. Wilkinson,
    • B. Windelband,
    • M. Winn &
    • A. Zimmermann
  97. Purdue University, West Lafayette, Indiana, USA

    • T. A. Browning
  98. Pusan National University, Pusan, South Korea

    • A. Borissov,
    • K. Choi,
    • S. U. Chung,
    • J. Eum,
    • J. Song &
    • I.-K. Yoo
  99. Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

    • A. Andronic,
    • R. Averbeck,
    • P. Braun-Munzinger,
    • A. Deisting,
    • P. Foka,
    • U. Frankenfeld,
    • C. Garabatos,
    • J. M. Gronefeld,
    • R. Grosso,
    • M. Ivanov,
    • R. T. Jimenez Bustamante,
    • L. Karayan,
    • T. Kollegger,
    • C. Lippmann,
    • P. Malzacher,
    • A. Marín,
    • N. A. Martin,
    • S. Masciocchi,
    • D. Miśkowiec,
    • M. Nicassio,
    • J. Onderwaater,
    • W. J. Park,
    • C. Schmidt,
    • K. Schwarz,
    • K. Schweda,
    • I. Selyuzhenkov,
    • F. Sozzi,
    • D. Vranic,
    • J. Wagner &
    • S. G. Weber
  100. Rudjer Bošković Institute, Zagreb, Croatia

    • T. Antičić
  101. Russian Federal Nuclear Center (VNIIEF), Sarov, Russia

    • D. Budnikov,
    • S. Filchagin,
    • R. Ilkaev,
    • A. Kuryakin,
    • A. Mamonov,
    • S. Nazarenko,
    • V. Punin,
    • A. Tumkin &
    • N. Zaviyalov
  102. Saha Institute of Nuclear Physics, Kolkata, India

    • S. Chattopadhyay,
    • D. Das,
    • I. Das,
    • P. Khan,
    • P. Roy &
    • T. Sinha
  103. School of Physics and Astronomy, University of Birmingham, Birmingham, UK

    • D. Alexandre,
    • H. A. Andrews,
    • L. S. Barnby,
    • D. Evans,
    • K. L. Graham,
    • P. G. Jones,
    • A. Jusko,
    • M. Krivda,
    • R. Lietava,
    • O. Villalobos Baillie &
    • N. Zardoshti
  104. Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

    • E. Calvo Villar,
    • E. Endress &
    • A. M. Gago
  105. Sezione INFN, Bari, Italy

    • G. de Cataldo,
    • D. Elia,
    • V. Lenti,
    • V. Manzari,
    • E. Nappi &
    • V. Paticchio
  106. Sezione INFN, Bologna, Italy

    • A. Alici,
    • P. Antonioli,
    • F. Cindolo,
    • D. Hatzifotiadou,
    • A. Margotti,
    • R. Nania,
    • F. Noferini,
    • O. Pinazza,
    • R. Preghenella,
    • E. Scapparone,
    • M. C. S. Williams &
    • C. Zampolli
  107. Sezione INFN, Cagliari, Italy

    • C. Cicalo,
    • A. Masoni &
    • S. Siddhanta
  108. Sezione INFN, Catania, Italy

    • A. Badalà &
    • G. S. Pappalardo
  109. Sezione INFN, Padova, Italy

    • F. Antinori,
    • A. Dainese,
    • B. Di Ruzza,
    • D. Fabris &
    • R. Turrisi
  110. Sezione INFN, Rome, Italy

    • M. A. Mazzoni
  111. Sezione INFN, Trieste, Italy

    • E. Fragiacomo,
    • N. Grion,
    • S. Piano &
    • A. Rachevski
  112. Sezione INFN, Turin, Italy

    • M. Agnello,
    • B. Alessandro,
    • R. Arnaldi,
    • S. Bagnasco,
    • C. Bedda,
    • E. Bruna,
    • P. Cerello,
    • Y. Corrales Morales,
    • N. De Marco,
    • A. Feliciello,
    • P. Giubellino,
    • S. L. La Pointe,
    • C. Oppedisano,
    • B. Paul,
    • F. Prino &
    • E. Scomparin
  113. SSC IHEP of NRC Kurchatov institute, Protvino, Russia

    • S. Evdokimov,
    • V. Izucheev,
    • Y. Kharlov,
    • E. Kondratyuk,
    • V. Petrov,
    • B. Polichtchouk,
    • S. Sadovsky &
    • A. Shangaraev
  114. Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria

    • L. Gruber,
    • S. Lehner,
    • J. W. Van Hoorne &
    • M. Weber
  115. SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France

    • L. Aphecetche,
    • B. Audurier,
    • G. Batigne,
    • B. Erazmus,
    • M. Estienne,
    • A. Francisco,
    • M. Germain,
    • G. Martínez García,
    • A. Morreale,
    • P. Pillot,
    • L. Ronflette,
    • Y. Schutz,
    • A. Shabetai,
    • D. Stocco &
    • J. Zhu
  116. Suranaree University of Technology, Nakhon Ratchasima, Thailand

    • C. Kobdaj &
    • W. Poonsawat
  117. Technical University of Košice, Košice, Slovakia

    • J. Cabala,
    • J. Cerkala,
    • S. Jadlovska,
    • J. Jadlovsky,
    • M. Kopcik &
    • M. Oravec
  118. Technical University of Split FESB, Split, Croatia

    • S. Gotovac,
    • E. Mudnic &
    • L. Vickovic
  119. The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

    • J. Bartke,
    • J. Bhom,
    • J. Figiel,
    • E. Gladysz-Dziadus,
    • L. Görlich,
    • M. Kowalski,
    • A. Matyja,
    • C. Mayer,
    • J. Otwinowski,
    • A. Rybicki &
    • I. Sputowska
  120. The University of Texas at Austin, Physics Department, Austin, Texas, USA

    • J. T. Blair,
    • E. F. Gauger,
    • A. G. Knospe,
    • C. Markert &
    • D. Thomas
  121. Universidad Autónoma de Sinaloa, Culiacán, Mexico

    • L. G. E. Beltran,
    • C. D. Galvan,
    • I. León Monzón &
    • P. L. M. Podesta-Lerma
  122. Universidade de São Paulo (USP), São Paulo, Brazil

    • C. Alves Garcia Prado,
    • M. Bregant,
    • M. R. Cosentino,
    • S. De,
    • C. de Conti,
    • D. Domenicis Gimenez,
    • M. A. S. Figueredo,
    • C. Jahnke,
    • C. Lagana Fernandes,
    • A. Mas,
    • M. G. Munhoz,
    • H. Natal da Luz,
    • A. C. Oliveira Da Silva,
    • A. A. P. Suaide &
    • H. J. C. Zanoli
  123. Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

    • D. S. D. Albuquerque,
    • D. D. Chinellato,
    • R. D. De Souza &
    • J. Takahashi
  124. University of Houston, Houston, Texas, USA

    • R. Bellwied,
    • L. Bianchi,
    • P. H. S. Y. Jayarathna,
    • S. Jena,
    • A. G. Knospe,
    • D. Mcdonald,
    • F. Ng,
    • L. Pinsky,
    • D. B. Piyarathna &
    • A. R. Timmins
  125. University of Jyväskylä, Jyväskylä, Finland

    • B. Chang,
    • D. J. Kim,
    • J. Rak,
    • M. Slupecki,
    • T. W. Snellman,
    • W. H. Trzaska,
    • M. Vargyas &
    • J. Viinikainen
  126. University of Liverpool, Liverpool, UK

    • M. Borri,
    • M. Chartier,
    • M. A. S. Figueredo &
    • J. Norman
  127. University of Tennessee, Knoxville, Tennessee, USA

    • A. J. Castro,
    • C. Hughes,
    • J. Mazer,
    • C. Nattrass,
    • K. F. Read,
    • R. Scott,
    • N. Sharma &
    • S. Sorensen
  128. University of the Witwatersrand, Johannesburg, South Africa

    • M. Marchisone &
    • Z. Vilakazi
  129. University of Tokyo, Tokyo, Japan

    • T. Gunji,
    • H. Hamagaki,
    • S. Hayashi,
    • H. Murakami,
    • Y. Sekiguchi,
    • K. Terasaki,
    • T. Tsuji &
    • Y. Watanabe
  130. University of Tsukuba, Tsukuba, Japan

    • O. Busch,
    • T. Chujo,
    • S. Esumi,
    • R. Hosokawa,
    • M. Inaba,
    • Y. Miake,
    • M. Sano,
    • N. Tanaka,
    • D. Watanabe &
    • H. Yokoyama
  131. University of Zagreb, Zagreb, Croatia

    • F. Erhardt,
    • M. Planinic,
    • N. Poljak,
    • G. Simatovic &
    • A. Utrobicic
  132. Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France

    • C. Cheshkov,
    • B. Cheynis,
    • L. Ducroux,
    • B. Teyssier,
    • R. Tieulent &
    • A. Uras
  133. Università di Brescia, Brescia, Italy

    • D. Pagano
  134. V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

    • I. Altsybeev,
    • G. Feofilov,
    • A. Kolojvari,
    • V. Kondratiev,
    • V. Kovalenko,
    • V. Vechernin,
    • L. Vinogradov &
    • A. Zarochentsev
  135. Variable Energy Cyclotron Centre, Kolkata, India

    • Z. Ahammed,
    • S. N. Alam,
    • S. Basu,
    • S. Chattopadhyay,
    • S. Choudhury,
    • A. K. Dubey,
    • P. Ghosh,
    • S. Kar,
    • S. A. Khan,
    • J. Mitra,
    • S. Muhuri,
    • M. Mukherjee,
    • T. K. Nayak,
    • S. K. Pal,
    • R. N. Patra,
    • S. Sadhu,
    • J. Saini,
    • D. Sarkar,
    • N. Sarkar,
    • A. I. Sheikh,
    • R. Singaraju,
    • V. Singhal &
    • Y. P. Viyogi
  136. Warsaw University of Technology, Warsaw, Poland

    • L. K. Graczykowski,
    • M. J. Jakubowska,
    • M. A. Janik,
    • A. Kisiel,
    • J. Oleniacz,
    • J. Pluta,
    • A. Szczepankiewicz,
    • M. Szymanski,
    • A. Zaborowska &
    • H. Zbroszczyk
  137. Wayne State University, Detroit, Michigan, USA

    • R. Belmont,
    • C. Bianchin,
    • J. Pan,
    • C. A. Pruneau,
    • P. Pujahari,
    • J. Putschke,
    • R. J. Reed,
    • M. A. Saleh &
    • S. A. Voloshin
  138. Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

    • G. G. Barnaföldi,
    • G. Bencedi,
    • D. Berenyi,
    • G. Biro,
    • L. Boldizsár,
    • E. Dénes,
    • G. Hamar,
    • G. Kiss,
    • P. Lévai,
    • A. Lowe,
    • S. Pochybova,
    • D. Varga &
    • G. Volpe
  139. Yale University, New Haven, Connecticut, USA

    • S. Aiola,
    • S. Balasubramanian,
    • H. Caines,
    • M. E. Connors,
    • R. J. Ehlers,
    • E. Epple,
    • O. A. Grachov,
    • J. W. Harris,
    • K. Lapidus,
    • T. H. Lutz,
    • R. D. Majka,
    • J. D. Mulligan,
    • S. Oh,
    • M. H. Oliver &
    • N. Smirnov
  140. Yonsei University, Seoul, South Korea

    • J. H. Kang,
    • D. Kim,
    • H. Kim,
    • M. Kim,
    • T. Kim,
    • Y. Kwon,
    • S. Lee &
    • M. Song
  141. Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

    • R. Keidel
  142. Deceased

    • J. Bartke,
    • E. Dénes &
    • M. Suljic
  143. Present addresses: Georgia State University, Atlanta, Georgia, USA (M.E.C.); Department of Applied Physics, Aligarh Muslim University, Aligarh, India (M.M.K.); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia (L.M.).

    • M. E. Connors,
    • M. Mohisin Khan &
    • L. Malinina

Consortia

  1. ALICE Collaboration

    • J. Adam,
    • D. Adamová,
    • M. M. Aggarwal,
    • G. Aglieri Rinella,
    • M. Agnello,
    • N. Agrawal,
    • Z. Ahammed,
    • S. Ahmad,
    • S. U. Ahn,
    • S. Aiola,
    • A. Akindinov,
    • S. N. Alam,
    • D. S. D. Albuquerque,
    • D. Aleksandrov,
    • B. Alessandro,
    • D. Alexandre,
    • R. Alfaro Molina,
    • A. Alici,
    • A. Alkin,
    • J. Alme,
    • T. Alt,
    • S. Altinpinar,
    • I. Altsybeev,
    • C. Alves Garcia Prado,
    • M. An,
    • C. Andrei,
    • H. A. Andrews,
    • A. Andronic,
    • V. Anguelov,
    • T. Antičić,
    • F. Antinori,
    • P. Antonioli,
    • L. Aphecetche,
    • H. Appelshäuser,
    • S. Arcelli,
    • R. Arnaldi,
    • O. W. Arnold,
    • I. C. Arsene,
    • M. Arslandok,
    • B. Audurier,
    • A. Augustinus,
    • R. Averbeck,
    • M. D. Azmi,
    • A. Badalà,
    • Y. W. Baek,
    • S. Bagnasco,
    • R. Bailhache,
    • R. Bala,
    • S. Balasubramanian,
    • A. Baldisseri,
    • R. C. Baral,
    • A. M. Barbano,
    • R. Barbera,
    • F. Barile,
    • G. G. Barnaföldi,
    • L. S. Barnby,
    • V. Barret,
    • P. Bartalini,
    • K. Barth,
    • J. Bartke,
    • E. Bartsch,
    • M. Basile,
    • N. Bastid,
    • S. Basu,
    • B. Bathen,
    • G. Batigne,
    • A. Batista Camejo,
    • B. Batyunya,
    • P. C. Batzing,
    • I. G. Bearden,
    • H. Beck,
    • C. Bedda,
    • N. K. Behera,
    • I. Belikov,
    • F. Bellini,
    • H. Bello Martinez,
    • R. Bellwied,
    • R. Belmont,
    • E. Belmont-Moreno,
    • L. G. E. Beltran,
    • V. Belyaev,
    • G. Bencedi,
    • S. Beole,
    • I. Berceanu,
    • A. Bercuci,
    • Y. Berdnikov,
    • D. Berenyi,
    • R. A. Bertens,
    • D. Berzano,
    • L. Betev,
    • A. Bhasin,
    • I. R. Bhat,
    • A. K. Bhati,
    • B. Bhattacharjee,
    • J. Bhom,
    • L. Bianchi,
    • N. Bianchi,
    • C. Bianchin,
    • J. Bielčík,
    • J. Bielčíková,
    • A. Bilandzic,
    • G. Biro,
    • R. Biswas,
    • S. Biswas,
    • S. Bjelogrlic,
    • J. T. Blair,
    • D. Blau,
    • C. Blume,
    • F. Bock,
    • A. Bogdanov,
    • H. Bøggild,
    • L. Boldizsár,
    • M. Bombara,
    • M. Bonora,
    • J. Book,
    • H. Borel,
    • A. Borissov,
    • M. Borri,
    • F. Bossú,
    • E. Botta,
    • C. Bourjau,
    • P. Braun-Munzinger,
    • M. Bregant,
    • T. Breitner,
    • T. A. Broker,
    • T. A. Browning,
    • M. Broz,
    • E. J. Brucken,
    • E. Bruna,
    • G. E. Bruno,
    • D. Budnikov,
    • H. Buesching,
    • S. Bufalino,
    • P. Buncic,
    • O. Busch,
    • Z. Buthelezi,
    • J. B. Butt,
    • J. T. Buxton,
    • J. Cabala,
    • D. Caffarri,
    • X. Cai,
    • H. Caines,
    • L. Calero Diaz,
    • A. Caliva,
    • E. Calvo Villar,
    • P. Camerini,
    • F. Carena,
    • W. Carena,
    • F. Carnesecchi,
    • J. Castillo Castellanos,
    • A. J. Castro,
    • E. A. R. Casula,
    • C. Ceballos Sanchez,
    • J. Cepila,
    • P. Cerello,
    • J. Cerkala,
    • B. Chang,
    • S. Chapeland,
    • M. Chartier,
    • J. L. Charvet,
    • S. Chattopadhyay,
    • S. Chattopadhyay,
    • A. Chauvin,
    • V. Chelnokov,
    • M. Cherney,
    • C. Cheshkov,
    • B. Cheynis,
    • V. Chibante Barroso,
    • D. D. Chinellato,
    • S. Cho,
    • P. Chochula,
    • K. Choi,
    • M. Chojnacki,
    • S. Choudhury,
    • P. Christakoglou,
    • C. H. Christensen,
    • P. Christiansen,
    • T. Chujo,
    • S. U. Chung,
    • C. Cicalo,
    • L. Cifarelli,
    • F. Cindolo,
    • J. Cleymans,
    • F. Colamaria,
    • D. Colella,
    • A. Collu,
    • M. Colocci,
    • G. Conesa Balbastre,
    • Z. Conesa del Valle,
    • M. E. Connors,
    • J. G. Contreras,
    • T. M. Cormier,
    • Y. Corrales Morales,
    • I. Cortés Maldonado,
    • P. Cortese,
    • M. R. Cosentino,
    • F. Costa,
    • J. Crkovska,
    • P. Crochet,
    • R. Cruz Albino,
    • E. Cuautle,
    • L. Cunqueiro,
    • T. Dahms,
    • A. Dainese,
    • M. C. Danisch,
    • A. Danu,
    • D. Das,
    • I. Das,
    • S. Das,
    • A. Dash,
    • S. Dash,
    • S. De,
    • A. De Caro,
    • G. de Cataldo,
    • C. de Conti,
    • J. de Cuveland,
    • A. De Falco,
    • D. De Gruttola,
    • N. De Marco,
    • S. De Pasquale,
    • R. D. De Souza,
    • A. Deisting,
    • A. Deloff,
    • E. Dénes,
    • C. Deplano,
    • P. Dhankher,
    • D. Di Bari,
    • A. Di Mauro,
    • P. Di Nezza,
    • B. Di Ruzza,
    • M. A. Diaz Corchero,
    • T. Dietel,
    • P. Dillenseger,
    • R. Divià,
    • Ø. Djuvsland,
    • A. Dobrin,
    • D. Domenicis Gimenez,
    • B. Dönigus,
    • O. Dordic,
    • T. Drozhzhova,
    • A. K. Dubey,
    • A. Dubla,
    • L. Ducroux,
    • P. Dupieux,
    • R. J. Ehlers,
    • D. Elia,
    • E. Endress,
    • H. Engel,
    • E. Epple,
    • B. Erazmus,
    • I. Erdemir,
    • F. Erhardt,
    • B. Espagnon,
    • M. Estienne,
    • S. Esumi,
    • J. Eum,
    • D. Evans,
    • S. Evdokimov,
    • G. Eyyubova,
    • L. Fabbietti,
    • D. Fabris,
    • J. Faivre,
    • A. Fantoni,
    • M. Fasel,
    • L. Feldkamp,
    • A. Feliciello,
    • G. Feofilov,
    • J. Ferencei,
    • A. Fernández Téllez,
    • E. G. Ferreiro,
    • A. Ferretti,
    • A. Festanti,
    • V. J. G. Feuillard,
    • J. Figiel,
    • M. A. S. Figueredo,
    • S. Filchagin,
    • D. Finogeev,
    • F. M. Fionda,
    • E. M. Fiore,
    • M. Floris,
    • S. Foertsch,
    • P. Foka,
    • S. Fokin,
    • E. Fragiacomo,
    • A. Francescon,
    • A. Francisco,
    • U. Frankenfeld,
    • G. G. Fronze,
    • U. Fuchs,
    • C. Furget,
    • A. Furs,
    • M. Fusco Girard,
    • J. J. Gaardhøje,
    • M. Gagliardi,
    • A. M. Gago,
    • K. Gajdosova,
    • M. Gallio,
    • C. D. Galvan,
    • D. R. Gangadharan,
    • P. Ganoti,
    • C. Gao,
    • C. Garabatos,
    • E. Garcia-Solis,
    • K. Garg,
    • C. Gargiulo,
    • P. Gasik,
    • E. F. Gauger,
    • M. Germain,
    • M. Gheata,
    • P. Ghosh,
    • S. K. Ghosh,
    • P. Gianotti,
    • P. Giubellino,
    • P. Giubilato,
    • E. Gladysz-Dziadus,
    • P. Glässel,
    • D. M. Goméz Coral,
    • A. Gomez Ramirez,
    • A. S. Gonzalez,
    • V. Gonzalez,
    • P. González-Zamora,
    • S. Gorbunov,
    • L. Görlich,
    • S. Gotovac,
    • V. Grabski,
    • O. A. Grachov,
    • L. K. Graczykowski,
    • K. L. Graham,
    • A. Grelli,
    • A. Grigoras,
    • C. Grigoras,
    • V. Grigoriev,
    • A. Grigoryan,
    • S. Grigoryan,
    • B. Grinyov,
    • N. Grion,
    • J. M. Gronefeld,
    • J. F. Grosse-Oetringhaus,
    • R. Grosso,
    • L. Gruber,
    • F. Guber,
    • R. Guernane,
    • B. Guerzoni,
    • K. Gulbrandsen,
    • T. Gunji,
    • A. Gupta,
    • R. Gupta,
    • R. Haake,
    • C. Hadjidakis,
    • M. Haiduc,
    • H. Hamagaki,
    • G. Hamar,
    • J. C. Hamon,
    • J. W. Harris,
    • A. Harton,
    • D. Hatzifotiadou,
    • S. Hayashi,
    • S. T. Heckel,
    • E. Hellbär,
    • H. Helstrup,
    • A. Herghelegiu,
    • G. Herrera Corral,
    • F. Herrmann,
    • B. A. Hess,
    • K. F. Hetland,
    • H. Hillemanns,
    • B. Hippolyte,
    • D. Horak,
    • R. Hosokawa,
    • P. Hristov,
    • C. Hughes,
    • T. J. Humanic,
    • N. Hussain,
    • T. Hussain,
    • D. Hutter,
    • D. S. Hwang,
    • R. Ilkaev,
    • M. Inaba,
    • E. Incani,
    • M. Ippolitov,
    • M. Irfan,
    • V. Isakov,
    • M. Ivanov,
    • V. Ivanov,
    • V. Izucheev,
    • B. Jacak,
    • N. Jacazio,
    • P. M. Jacobs,
    • M. B. Jadhav,
    • S. Jadlovska,
    • J. Jadlovsky,
    • C. Jahnke,
    • M. J. Jakubowska,
    • M. A. Janik,
    • P. H. S. Y. Jayarathna,
    • C. Jena,
    • S. Jena,
    • R. T. Jimenez Bustamante,
    • P. G. Jones,
    • A. Jusko,
    • P. Kalinak,
    • A. Kalweit,
    • J. H. Kang,
    • V. Kaplin,
    • S. Kar,
    • A. Karasu Uysal,
    • O. Karavichev,
    • T. Karavicheva,
    • L. Karayan,
    • E. Karpechev,
    • U. Kebschull,
    • R. Keidel,
    • D. L. D. Keijdener,
    • M. Keil,
    • M. Mohisin Khan,
    • P. Khan,
    • S. A. Khan,
    • A. Khanzadeev,
    • Y. Kharlov,
    • A. Khatun,
    • B. Kileng,
    • D. W. Kim,
    • D. J. Kim,
    • D. Kim,
    • H. Kim,
    • J. S. Kim,
    • J. Kim,
    • M. Kim,
    • S. Kim,
    • T. Kim,
    • S. Kirsch,
    • I. Kisel,
    • S. Kiselev,
    • A. Kisiel,
    • G. Kiss,
    • J. L. Klay,
    • C. Klein,
    • J. Klein,
    • C. Klein-Bösing,
    • S. Klewin,
    • A. Kluge,
    • M. L. Knichel,
    • A. G. Knospe,
    • C. Kobdaj,
    • M. Kofarago,
    • T. Kollegger,
    • A. Kolojvari,
    • V. Kondratiev,
    • N. Kondratyeva,
    • E. Kondratyuk,
    • A. Konevskikh,
    • M. Kopcik,
    • M. Kour,
    • C. Kouzinopoulos,
    • O. Kovalenko,
    • V. Kovalenko,
    • M. Kowalski,
    • G. Koyithatta Meethaleveedu,
    • I. Králik,
    • A. Kravčáková,
    • M. Krivda,
    • F. Krizek,
    • E. Kryshen,
    • M. Krzewicki,
    • A. M. Kubera,
    • V. Kučera,
    • C. Kuhn,
    • P. G. Kuijer,
    • A. Kumar,
    • J. Kumar,
    • L. Kumar,
    • S. Kumar,
    • P. Kurashvili,
    • A. Kurepin,
    • A. B. Kurepin,
    • A. Kuryakin,
    • M. J. Kweon,
    • Y. Kwon,
    • S. L. La Pointe,
    • P. La Rocca,
    • P. Ladron de Guevara,
    • C. Lagana Fernandes,
    • I. Lakomov,
    • R. Langoy,
    • K. Lapidus,
    • C. Lara,
    • A. Lardeux,
    • A. Lattuca,
    • E. Laudi,
    • R. Lea,
    • L. Leardini,
    • S. Lee,
    • F. Lehas,
    • S. Lehner,
    • R. C. Lemmon,
    • V. Lenti,
    • E. Leogrande,
    • I. León Monzón,
    • H. León Vargas,
    • M. Leoncino,
    • P. Lévai,
    • S. Li,
    • X. Li,
    • J. Lien,
    • R. Lietava,
    • S. Lindal,
    • V. Lindenstruth,
    • C. Lippmann,
    • M. A. Lisa,
    • H. M. Ljunggren,
    • D. F. Lodato,
    • P. I. Loenne,
    • V. Loginov,
    • C. Loizides,
    • X. Lopez,
    • E. López Torres,
    • A. Lowe,
    • P. Luettig,
    • M. Lunardon,
    • G. Luparello,
    • M. Lupi,
    • T. H. Lutz,
    • A. Maevskaya,
    • M. Mager,
    • S. Mahajan,
    • S. M. Mahmood,
    • A. Maire,
    • R. D. Majka,
    • M. Malaev,
    • I. Maldonado Cervantes,
    • L. Malinina,
    • D. Mal’Kevich,
    • P. Malzacher,
    • A. Mamonov,
    • V. Manko,
    • F. Manso,
    • V. Manzari,
    • Y. Mao,
    • M. Marchisone,
    • J. Mareš,
    • G. V. Margagliotti,
    • A. Margotti,
    • J. Margutti,
    • A. Marín,
    • C. Markert,
    • M. Marquard,
    • N. A. Martin,
    • P. Martinengo,
    • M. I. Martínez,
    • G. Martínez García,
    • M. Martinez Pedreira,
    • A. Mas,
    • S. Masciocchi,
    • M. Masera,
    • A. Masoni,
    • A. Mastroserio,
    • A. Matyja,
    • C. Mayer,
    • J. Mazer,
    • M. Mazzilli,
    • M. A. Mazzoni,
    • D. Mcdonald,
    • F. Meddi,
    • Y. Melikyan,
    • A. Menchaca-Rocha,
    • E. Meninno,
    • J. Mercado Pérez,
    • M. Meres,
    • S. Mhlanga,
    • Y. Miake,
    • M. M. Mieskolainen,
    • K. Mikhaylov,
    • L. Milano,
    • J. Milosevic,
    • A. Mischke,
    • A. N. Mishra,
    • T. Mishra,
    • D. Miśkowiec,
    • J. Mitra,
    • C. M. Mitu,
    • N. Mohammadi,
    • B. Mohanty,
    • L. Molnar,
    • L. Montaño Zetina,
    • E. Montes,
    • D. A. Moreira De Godoy,
    • L. A. P. Moreno,
    • S. Moretto,
    • A. Morreale,
    • A. Morsch,
    • V. Muccifora,
    • E. Mudnic,
    • D. Mühlheim,
    • S. Muhuri,
    • M. Mukherjee,
    • J. D. Mulligan,
    • M. G. Munhoz,
    • K. Münning,
    • R. H. Munzer,
    • H. Murakami,
    • S. Murray,
    • L. Musa,
    • J. Musinsky,
    • B. Naik,
    • R. Nair,
    • B. K. Nandi,
    • R. Nania,
    • E. Nappi,
    • M. U. Naru,
    • H. Natal da Luz,
    • C. Nattrass,
    • S. R. Navarro,
    • K. Nayak,
    • R. Nayak,
    • T. K. Nayak,
    • S. Nazarenko,
    • A. Nedosekin,
    • R. A. Negrao De Oliveira,
    • L. Nellen,
    • F. Ng,
    • M. Nicassio,
    • M. Niculescu,
    • J. Niedziela,
    • B. S. Nielsen,
    • S. Nikolaev,
    • S. Nikulin,
    • V. Nikulin,
    • F. Noferini,
    • P. Nomokonov,
    • G. Nooren,
    • J. C. C. Noris,
    • J. Norman,
    • A. Nyanin,
    • J. Nystrand,
    • H. Oeschler,
    • S. Oh,
    • S. K. Oh,
    • A. Ohlson,
    • A. Okatan,
    • T. Okubo,
    • J. Oleniacz,
    • A. C. Oliveira Da Silva,
    • M. H. Oliver,
    • J. Onderwaater,
    • C. Oppedisano,
    • R. Orava,
    • M. Oravec,
    • A. Ortiz Velasquez,
    • A. Oskarsson,
    • J. Otwinowski,
    • K. Oyama,
    • M. Ozdemir,
    • Y. Pachmayer,
    • D. Pagano,
    • P. Pagano,
    • G. Paić,
    • S. K. Pal,
    • P. Palni,
    • J. Pan,
    • A. K. Pandey,
    • V. Papikyan,
    • G. S. Pappalardo,
    • P. Pareek,
    • W. J. Park,
    • S. Parmar,
    • A. Passfeld,
    • V. Paticchio,
    • R. N. Patra,
    • B. Paul,
    • H. Pei,
    • T. Peitzmann,
    • X. Peng,
    • H. Pereira Da Costa,
    • D. Peresunko,
    • E. Perez Lezama,
    • V. Peskov,
    • Y. Pestov,
    • V. Petráček,
    • V. Petrov,
    • M. Petrovici,
    • C. Petta,
    • S. Piano,
    • M. Pikna,
    • P. Pillot,
    • L. O. D. L. Pimentel,
    • O. Pinazza,
    • L. Pinsky,
    • D. B. Piyarathna,
    • M. Płoskoń,
    • M. Planinic,
    • J. Pluta,
    • S. Pochybova,
    • P. L. M. Podesta-Lerma,
    • M. G. Poghosyan,
    • B. Polichtchouk,
    • N. Poljak,
    • W. Poonsawat,
    • A. Pop,
    • H. Poppenborg,
    • S. Porteboeuf-Houssais,
    • J. Porter,
    • J. Pospisil,
    • S. K. Prasad,
    • R. Preghenella,
    • F. Prino,
    • C. A. Pruneau,
    • I. Pshenichnov,
    • M. Puccio,
    • G. Puddu,
    • P. Pujahari,
    • V. Punin,
    • J. Putschke,
    • H. Qvigstad,
    • A. Rachevski,
    • S. Raha,
    • S. Rajput,
    • J. Rak,
    • A. Rakotozafindrabe,
    • L. Ramello,
    • F. Rami,
    • R. Raniwala,
    • S. Raniwala,
    • S. S. Räsänen,
    • B. T. Rascanu,
    • D. Rathee,
    • I. Ravasenga,
    • K. F. Read,
    • K. Redlich,
    • R. J. Reed,
    • A. Rehman,
    • P. Reichelt,
    • F. Reidt,
    • X. Ren,
    • R. Renfordt,
    • A. R. Reolon,
    • A. Reshetin,
    • K. Reygers,
    • V. Riabov,
    • R. A. Ricci,
    • T. Richert,
    • M. Richter,
    • P. Riedler,
    • W. Riegler,
    • F. Riggi,
    • C. Ristea,
    • M. Rodríguez Cahuantzi,
    • A. Rodriguez Manso,
    • K. Røed,
    • E. Rogochaya,
    • D. Rohr,
    • D. Röhrich,
    • F. Ronchetti,
    • L. Ronflette,
    • P. Rosnet,
    • A. Rossi,
    • F. Roukoutakis,
    • A. Roy,
    • C. Roy,
    • P. Roy,
    • A. J. Rubio Montero,
    • R. Rui,
    • R. Russo,
    • E. Ryabinkin,
    • Y. Ryabov,
    • A. Rybicki,
    • S. Saarinen,
    • S. Sadhu,
    • S. Sadovsky,
    • K. Šafařík,
    • B. Sahlmuller,
    • P. Sahoo,
    • R. Sahoo,
    • S. Sahoo,
    • P. K. Sahu,
    • J. Saini,
    • S. Sakai,
    • M. A. Saleh,
    • J. Salzwedel,
    • S. Sambyal,
    • V. Samsonov,
    • L. Šándor,
    • A. Sandoval,
    • M. Sano,
    • D. Sarkar,
    • N. Sarkar,
    • P. Sarma,
    • E. Scapparone,
    • F. Scarlassara,
    • C. Schiaua,
    • R. Schicker,
    • C. Schmidt,
    • H. R. Schmidt,
    • M. Schmidt,
    • S. Schuchmann,
    • J. Schukraft,
    • Y. Schutz,
    • K. Schwarz,
    • K. Schweda,
    • G. Scioli,
    • E. Scomparin,
    • R. Scott,
    • M. Šefčík,
    • J. E. Seger,
    • Y. Sekiguchi,
    • D. Sekihata,
    • I. Selyuzhenkov,
    • K. Senosi,
    • S. Senyukov,
    • E. Serradilla,
    • A. Sevcenco,
    • A. Shabanov,
    • A. Shabetai,
    • O. Shadura,
    • R. Shahoyan,
    • A. Shangaraev,
    • A. Sharma,
    • M. Sharma,
    • M. Sharma,
    • N. Sharma,
    • A. I. Sheikh,
    • K. Shigaki,
    • Q. Shou,
    • K. Shtejer,
    • Y. Sibiriak,
    • S. Siddhanta,
    • K. M. Sielewicz,
    • T. Siemiarczuk,
    • D. Silvermyr,
    • C. Silvestre,
    • G. Simatovic,
    • G. Simonetti,
    • R. Singaraju,
    • R. Singh,
    • V. Singhal,
    • T. Sinha,
    • B. Sitar,
    • M. Sitta,
    • T. B. Skaali,
    • M. Slupecki,
    • N. Smirnov,
    • R. J. M. Snellings,
    • T. W. Snellman,
    • J. Song,
    • M. Song,
    • Z. Song,
    • F. Soramel,
    • S. Sorensen,
    • F. Sozzi,
    • E. Spiriti,
    • I. Sputowska,
    • M. Spyropoulou-Stassinaki,
    • J. Stachel,
    • I. Stan,
    • P. Stankus,
    • E. Stenlund,
    • G. Steyn,
    • J. H. Stiller,
    • D. Stocco,
    • P. Strmen,
    • A. A. P. Suaide,
    • T. Sugitate,
    • C. Suire,
    • M. Suleymanov,
    • M. Suljic,
    • R. Sultanov,
    • M. Šumbera,
    • S. Sumowidagdo,
    • S. Swain,
    • A. Szabo,
    • I. Szarka,
    • A. Szczepankiewicz,
    • M. Szymanski,
    • U. Tabassam,
    • J. Takahashi,
    • G. J. Tambave,
    • N. Tanaka,
    • M. Tarhini,
    • M. Tariq,
    • M. G. Tarzila,
    • A. Tauro,
    • G. Tejeda Muñoz,
    • A. Telesca,
    • K. Terasaki,
    • C. Terrevoli,
    • B. Teyssier,
    • J. Thäder,
    • D. Thakur,
    • D. Thomas,
    • R. Tieulent,
    • A. Tikhonov,
    • A. R. Timmins,
    • A. Toia,
    • S. Trogolo,
    • G. Trombetta,
    • V. Trubnikov,
    • W. H. Trzaska,
    • T. Tsuji,
    • A. Tumkin,
    • R. Turrisi,
    • T. S. Tveter,
    • K. Ullaland,
    • A. Uras,
    • G. L. Usai,
    • A. Utrobicic,
    • M. Vala,
    • L. Valencia Palomo,
    • J. Van Der Maarel,
    • J. W. Van Hoorne,
    • M. van Leeuwen,
    • T. Vanat,
    • P. Vande Vyvre,
    • D. Varga,
    • A. Vargas,
    • M. Vargyas,
    • R. Varma,
    • M. Vasileiou,
    • A. Vasiliev,
    • A. Vauthier,
    • O. Vázquez Doce,
    • V. Vechernin,
    • A. M. Veen,
    • A. Velure,
    • E. Vercellin,
    • S. Vergara Limón,
    • R. Vernet,
    • L. Vickovic,
    • J. Viinikainen,
    • Z. Vilakazi,
    • O. Villalobos Baillie,
    • A. Villatoro Tello,
    • A. Vinogradov,
    • L. Vinogradov,
    • T. Virgili,
    • V. Vislavicius,
    • Y. P. Viyogi,
    • A. Vodopyanov,
    • M. A. Völkl,
    • K. Voloshin,
    • S. A. Voloshin,
    • G. Volpe,
    • B. von Haller,
    • I. Vorobyev,
    • D. Vranic,
    • J. Vrláková,
    • B. Vulpescu,
    • B. Wagner,
    • J. Wagner,
    • H. Wang,
    • M. Wang,
    • D. Watanabe,
    • Y. Watanabe,
    • M. Weber,
    • S. G. Weber,
    • D. F. Weiser,
    • J. P. Wessels,
    • U. Westerhoff,
    • A. M. Whitehead,
    • J. Wiechula,
    • J. Wikne,
    • G. Wilk,
    • J. Wilkinson,
    • G. A. Willems,
    • M. C. S. Williams,
    • B. Windelband,
    • M. Winn,
    • S. Yalcin,
    • P. Yang,
    • S. Yano,
    • Z. Yin,
    • H. Yokoyama,
    • I.-K. Yoo,
    • J. H. Yoon,
    • V. Yurchenko,
    • A. Zaborowska,
    • V. Zaccolo,
    • A. Zaman,
    • C. Zampolli,
    • H. J. C. Zanoli,
    • S. Zaporozhets,
    • N. Zardoshti,
    • A. Zarochentsev,
    • P. Závada,
    • N. Zaviyalov,
    • H. Zbroszczyk,
    • I. S. Zgura,
    • M. Zhalov,
    • H. Zhang,
    • X. Zhang,
    • Y. Zhang,
    • C. Zhang,
    • Z. Zhang,
    • C. Zhao,
    • N. Zhigareva,
    • D. Zhou,
    • Y. Zhou,
    • Z. Zhou,
    • H. Zhu,
    • J. Zhu,
    • A. Zichichi,
    • A. Zimmermann,
    • M. B. Zimmermann,
    • G. Zinovjev &
    • M. Zyzak

Contributions

All authors have contributed to the publication, being variously involved in the design and the construction of the detectors, in writing software, calibrating subsystems, operating the detectors and acquiring data, and finally analysing the processed data. The ALICE Collaboration members discussed and approved the scientific results. The manuscript was prepared by a subgroup of authors appointed by the collaboration and subject to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

    Additional data