Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Edge reconstruction in fractional quantum Hall states

Abstract

The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of ‘upstream’ neutral modes in the fractional QHE has raised doubts about the present models of edge channels. Here, we present a new picture of the edge reconstruction in two of the hole-conjugate states. For example, while the present model for ν = (2/3) consists of a single downstream chiral charge channel with conductance (2/3)(e2/h) and an upstream neutral mode, we show that the current is carried by two separate downstream chiral edge channels, each with conductance (1/3)(e2/h). We uncover a novel mechanism of fragmentation of upstream neutral modes into downstream propagating charge modes that induces current fluctuations with zero net current. Our unexpected results underline the need for better understanding of edge reconstruction and energy transport in all fractional QHE states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The different theoretical modes of ν = 2/3 and the observation of two separate charge modes and the way to differentiate between one and two channels.
Figure 2: Comparison between the L = 9 μm and the L = 0.4 μm devices.
Figure 3: Fabry–Pérot interferometer (FPI) geometry.
Figure 4: Finite current fluctuations accompanying null net current, and a schematic model for the interplay between charge and neutral modes.
Figure 5: Effective Fano factors in a two-QPC configuration.
Figure 6: Neutralon-induced noise.

Similar content being viewed by others

References

  1. Wen, X.-G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 06, 1711–1762 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  2. Beenakker, C. W. J. Edge channels for the fractional quantum Hall effect. Phys. Rev. Lett. 64, 216–219 (1990).

    Article  ADS  Google Scholar 

  3. MacDonald, A. H. Edge states in the fractional quantum Hall effect regime. Phys. Rev. Lett. 64, 220–223 (1990).

    Article  ADS  Google Scholar 

  4. Kane, C. L., Fisher, M. P. A. & Polchinski, J. Randomness at the edge: theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett. 72, 4129–4132 (1994).

    Article  ADS  Google Scholar 

  5. Kane, C. L. & Fisher, M. P. A. Impurity scattering and transport of fractional quantum Hall edge states. Phys. Rev. B 51, 13449–13466 (1995).

    Article  ADS  Google Scholar 

  6. Bid, A. et al. Observation of neutral modes in the fractional quantum Hall regime. Nature 466, 585–590 (2010).

    Article  ADS  Google Scholar 

  7. Inoue, H. et al. Proliferation of neutral modes in fractional quantum Hall states. Nat. Commun. 5, 4067 (2014).

    Article  ADS  Google Scholar 

  8. Altimiras, C. et al. Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109, 026803 (2012).

    Article  ADS  Google Scholar 

  9. Grivin, S. M. Particle–hole symmetry in the anomalous quantum Hall effect. Phys. Rev. B 29, 6012–6014 (1984).

    Article  ADS  Google Scholar 

  10. Ashoori, R., Stormer, H., Pfeiffer, L., Baldwin, K. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894–3897 (1992).

    Article  ADS  Google Scholar 

  11. Chang, A. A unified transport theory for the integral and fractional quantum Hall effects: phase boundaries, edge currents, and transmission/reflection probabilities. Solid State Commun. 74, 871–876 (1990).

    Article  ADS  Google Scholar 

  12. Meir, Y. Composite edge states in the ν = 2/3 fractional quantum Hall regime. Phys. Rev. Lett. 72, 2624–2627 (1994).

    Article  ADS  Google Scholar 

  13. Wang, J., Meir, Y. & Gefen, Y. Edge reconstruction in the ν = 2/3 fractional quantum Hall state. Phys. Rev. Lett. 111, 246803 (2013).

    Article  ADS  Google Scholar 

  14. Gross, Y., Dolev, M., Heiblum, M., Umansky, V. & Mahalu, D. Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles? Phys. Rev. Lett. 108, 226801 (2012).

    Article  ADS  Google Scholar 

  15. Gurman, I., Sabo, R., Heiblum, M., Umansky, V. & Mahalu, D. Extracting net current from an upstream neutral mode in the fractional quantum Hall regime. Nat. Commun. 3, 1289 (2012).

    Article  ADS  Google Scholar 

  16. Venkatachalamy, V., Hart, S., Pfeiffer, L., West, K. & Yacoby, A. Local thermometry of neutral modes on the quantum Hall edge. Nat. Phys. 8, 676–681 (2012).

    Article  Google Scholar 

  17. Bid, A., Ofek, N., Heiblum, M., Umansky, U. & Mahalu, D. Shot noise and charge at the 2/3 composite fractional quantum Hall state. Phys. Rev. Lett. 103, 236802 (2009).

    Article  ADS  Google Scholar 

  18. Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  19. Ofek, N. et al. The role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article  ADS  Google Scholar 

  20. McClure, D. T., Chang, W., Marcus, C., Pfeiffer, L. N. & West, K. W. Fabry–Perot interferometry with fractional charges. Phys. Rev. Lett. 108, 256804 (2012).

    Article  ADS  Google Scholar 

  21. Rosenow, B. & Halperin, B. I. Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007).

    Article  ADS  Google Scholar 

  22. Halperin, B., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry–Pérot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article  ADS  Google Scholar 

  23. Martin, T. & Landauer, R. Wave-packet approach to noise in multichannel mesoscopic systems. Phys. Rev. B 45, 1742–1755 (1992).

    Article  ADS  Google Scholar 

  24. de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article  ADS  Google Scholar 

  25. Saminadayar, L., Glattli, D., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article  ADS  Google Scholar 

  26. Dolev, M., Heiblum, M., Umansky, V., Stern, A. & Mahalu, D. Observation of a quarter of an electron charge at the: ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.H. acknowledges the partial support of the Minerva Foundation, grant no. 711752, the German Israeli Foundation (GIF), grant no. I-1241- 303.10/2014, and the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement No. 339070. Y.G. acknowledges the partial support of DFG Grant No. RO 2247/8-1, the Minerva Foundation, the Russia–Israel IMOS project and by CRC183 of the DFG. I.G. is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.S., I.G., A.R. and M.H. designed the experiment, R.S., I.G., A.R., F.L., D.B. and M.H. preformed the measurements, R.S., I.G., A.R., F.L. and M.H. did the analysis, J.P. and Y.G. developed the theoretical model. R.S., I.G., A.R., F.L., J.P., M.H. and Y.G. wrote the paper. V.U. grew the 2DEG and D.M. was responsible for the e-beam lithography.

Corresponding author

Correspondence to Moty Heiblum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabo, R., Gurman, I., Rosenblatt, A. et al. Edge reconstruction in fractional quantum Hall states. Nature Phys 13, 491–496 (2017). https://doi.org/10.1038/nphys4010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing