Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point

Abstract

The emergence of a triple phase point in a two-dimensional parameter space (such as pressure and temperature) can offer unforeseen opportunities for the coupling of two seemingly independent order parameters. On the basis of this, we demonstrate the electric control of magnetic order by manipulating chemical pressure: lanthanum substitution in the antiferromagnetic ferroelectric BiFeO3. Our demonstration relies on the finding that a multiferroic triple phase point of a single spin-disordered phase and two spin-ordered phases emerges near room temperature in Bi0.9La0.1FeO3 ferroelectric thin films. By using spatially resolved X-ray absorption spectroscopy, we provide direct evidence that the electric poling of a particular region of the compound near the triple phase point results in an antiferromagnetic phase while adjacent unpoled regions remain magnetically disordered, opening a promising avenue for magnetoelectric applications at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed phase diagram of BLFO thin films.
Figure 2: Phenomenological theory describing the multiferroic phases and competing natures of the BLFO system.
Figure 3: Spectroscopic evidence for the electric-field-induced magnetic phase switching in a Bi0.9La0.1FeO3 thin film at room temperature.
Figure 4: Reversible electric switching of the magnetic order.
Figure 5: STEM/EELS measurement for checking the chemical stability in the electrically formed area.

Similar content being viewed by others

References

  1. Khomskii, D. I. Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006).

    Article  ADS  Google Scholar 

  2. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article  ADS  Google Scholar 

  3. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  ADS  Google Scholar 

  4. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994).

    Article  ADS  Google Scholar 

  5. Noheda, B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002).

    Article  ADS  Google Scholar 

  6. Kan, D. et al. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3 . Adv. Funct. Mater. 20, 1108–1115 (2010).

    Article  Google Scholar 

  7. Keeble, D. S., Benabdallah, F., Thomas, P. A., Maglione, M. & Kreisel, J. Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl. Phys. Lett. 102, 092903 (2013).

    Article  ADS  Google Scholar 

  8. Park, J. H. et al. Measurement of a solid-state triple point at the metal-insulator transition in VO2 . Nature 500, 431–434 (2013).

    Article  ADS  Google Scholar 

  9. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  Google Scholar 

  10. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

    Article  ADS  Google Scholar 

  11. Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).

    Article  ADS  Google Scholar 

  12. Lebeugle, D., Mougin, A., Viret, M., Colson, D. & Ranno, L. Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3 . Phys. Rev. Lett. 103, 257601 (2009).

    Article  ADS  Google Scholar 

  13. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  ADS  Google Scholar 

  14. Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 . Nat. Phys. 8, 81–88 (2012).

    Article  ADS  Google Scholar 

  15. Yang, C.-H. et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009).

    Article  ADS  Google Scholar 

  16. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

    Article  ADS  Google Scholar 

  17. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).

    Article  ADS  Google Scholar 

  18. Béa, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

    Article  ADS  Google Scholar 

  19. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    Article  ADS  Google Scholar 

  20. Ko, K.-T. et al. Concurrent transition of ferroelectric and magnetic ordering near room temperature. Nat. Commun. 2, 567 (2011).

    Article  ADS  Google Scholar 

  21. Infante, I. C. et al. Multiferroic phase transition near room temperature in BiFeO3 films. Phys. Rev. Lett. 107, 237601 (2011).

    Article  ADS  Google Scholar 

  22. Siemons, W., Biegalski, M. D., Nam, J. H. & Christen, H. M. Temperature-driven structural phase transition in tetragonal-like BiFeO3 . Appl. Phys. Express 4, 095801 (2011).

    Article  ADS  Google Scholar 

  23. Chen, Z. et al. Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv. Funct. Mater. 21, 133–138 (2011).

    Article  Google Scholar 

  24. MacDougall, G. J. et al. Antiferromagnetic transitions in tetragonal-like BiFeO3 . Phys. Rev. B 85, 100406(R) (2012).

    Article  ADS  Google Scholar 

  25. Hatt, A. J., Spaldin, N. A. & Ederer, C. Strain-induced isosymmetric phase transition in BiFeO3 . Phys. Rev. B 81, 054109 (2010).

    Article  ADS  Google Scholar 

  26. Diéguez, O., González-Vázquez, O. E., Wojdeł, J. C. & Íñiguez, J. First-principles predictions of low-energy phases of multiferroic BiFeO3 . Phys. Rev. B 83, 094105 (2011).

    Article  ADS  Google Scholar 

  27. Catalan, G. et al. Effect of chemical substitution on the Néel temperature of multiferroic Bi1−xCaxFeO3 . Phys. Rev. B 79, 212415 (2009).

    Article  ADS  Google Scholar 

  28. Pokatilov, V. S., Sigov, A. S. & Konovalova, A. O. Mössbauer effect study of Bi0.8La0.2FeO3 multiferroic on 57Fe nuclei. JETP Lett. 94, 698–702 (2012).

    Article  Google Scholar 

  29. Yang, C.-H., Kan, D., Takeuchi, I., Nagarajan, V. & Seidel, J. Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012).

    Article  Google Scholar 

  30. Kaczmarek, W., Polomska, M. & Pajak, Z. Phase diagram of (Bi1−xLax)FeO3 solid solution. Phys. Lett. A 47, 227–228 (1974).

    Article  ADS  Google Scholar 

  31. Infante, I. C. et al. Bridging multiferroic phase transitions by epitaxial strain in BiFeO3 . Phys. Rev. Lett. 105, 057601 (2010).

    Article  ADS  Google Scholar 

  32. Samara, G. A. The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367–R411 (2003).

    Article  ADS  Google Scholar 

  33. Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

    Article  ADS  Google Scholar 

  34. Lee, J.-H. et al. Variations of ferroelectric off-centering distortion and 3d-4p orbital mixing in La-doped BiFeO3 multiferroics. Phys. Rev. B 82, 045113 (2010).

    Article  ADS  Google Scholar 

  35. Kan, D., Anbusathaiah, V. & Takeuchi, I. Chemical substitution-induced ferroelectric polarization rotation in BiFeO3 . Adv. Mater. 23, 1765–1769 (2011).

    Article  Google Scholar 

  36. Chikazumi, S. & Charap, S. H. Physics of Magnetism (Krieger Publishing, 1978).

    Google Scholar 

  37. Morosin, B. Exchange striction effects in MnO and MnS. Phys. Rev. B 1, 236–243 (1970).

    Article  ADS  Google Scholar 

  38. Lee, S. et al. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature 451, 805–808 (2008).

    Article  ADS  Google Scholar 

  39. Lee, S. et al. Negative magnetostrictive magnetoelectric coupling of BiFeO3 . Phys. Rev. B 88, 060103(R) (2013).

    Article  ADS  Google Scholar 

  40. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    Article  ADS  Google Scholar 

  41. Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer-Verlag, 2006).

    Google Scholar 

  42. Brown, W. F., Hornreich, R. M. & Shtrikman, S. Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168, 574–577 (1968).

    Article  ADS  Google Scholar 

  43. Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotech. 4, 868–875 (2009).

    Article  ADS  Google Scholar 

  44. Kim, K.-E. et al. Electric control of straight stripe conductive mixed-phase nanosturctures in La-doped BiFeO3 . NPG Asia Mater. 6, e81 (2014).

    Article  ADS  Google Scholar 

  45. Vasudevan, R. K. et al. Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat. Commun. 5, 4971 (2014).

    Article  ADS  Google Scholar 

  46. Bauer, U., Emori, S. & Beach, G. S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat. Nanotech. 8, 411–416 (2013).

    Article  ADS  Google Scholar 

  47. Yi, H. T., Choi, T., Choi, S. G., Oh, Y. S. & Cheong, S.-W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3 . Adv. Mater. 23, 3403–3407 (2011).

    Article  Google Scholar 

  48. Lim, J. S. et al. Electric-field-induced insulator to Coulomb glass transition via oxygen-vacancy migration in Ca-doped BiFeO3 . Phys. Rev. B. 94, 035123 (2016).

    Article  ADS  Google Scholar 

  49. Tanaka, A. & Jo, T. Resonant 3d, 3p and 3s photoemission in transition metal oxides predicted at 2p threshold. J. Phys. Soc. Jpn 63, 2788–2807 (1994).

    Article  ADS  Google Scholar 

  50. Harrison, W. A. Electronic Structure and the Properties of Solids (Dover, 1989).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) Grant funded by the Korean Government (NRF-2013S1A2A2035418 and NRF-2014R1A2A2A01005979) and the NRF via the Center for Quantum Coherence in Condensed Matter (2016R1A5A1008184). Soft X-ray studies were carried out at the SSRL, a Directorate of SLAC and an Office of Science User Facility operated for the US DOE Office of Science by Stanford University. J.-S.L. acknowledges partial support by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. K.-T.K. acknowledges Study for Nano Scale Optomaterials and Complex Phase Materials (2016K1A4A4A01922028) through NRF funded by MSIP of Korea. Y.H.J. was supported by the NRF of Korea (SRC-2011-0030786 and 2015R1D1A1A02062239). This work was supported by the Global Frontier R&D Program on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078872).

Author information

Authors and Affiliations

Authors

Contributions

B.-K.J. and C.-H.Y. conceived and designed the project. B.-K.J. and K.K. prepared samples and B.-K.J., M.H.J. and Y.H.J. characterized capacitance and loss tangent. J.H.L., B.-K.J., Y.-J.K., H.-B.J. and T.Y.K. carried out structural analysis using X-ray diffraction. J.-S.L., H.O., H.J., K.-T.K. and B.-K.J. performed and analysed soft X-ray spectroscopy. K.C., P.S., K.-E.K. and J.S. measured and analysed angle-resolved PFM. G.-Y.K., K.S. and S.-Y.C. performed STEM and EELS. B.-K.J. and C.-H.Y. designed and simulated the Landau model, and led manuscript preparation with contributions from all authors.

Corresponding author

Correspondence to Chan-Ho Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, BK., Lee, J., Chu, K. et al. Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nature Phys 13, 189–196 (2017). https://doi.org/10.1038/nphys3902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing