Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photo-spin-voltaic effect

Abstract

The photo-voltaic effect typically occurs in semiconductors and involves photon-driven excitation of electrons from a valence band to a conduction band. In a region such as a p–n junction that has a built-in electric field, the excited electrons and holes diffuse in opposite directions, resulting in an electric voltage. This letter reports that a spin voltage can be created by photons in a non-magnetic metal that is in close proximity to a magnetic insulator: a photo-spin-voltaic effect. The experiments use platinum/magnetic insulator bilayer structures. On exposure to light, there occurs photon-driven, spin-dependent excitation of electrons in several platinum atomic layers near the platinum/magnetic insulator interface. The excited electrons and holes diffuse in different manners, and this gives rise to an effective spin voltage at the interface and a corresponding pure spin current that flows across the platinum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photo-spin-voltaic effect in a platinum (Pt)/magnetic insulator (MI) bi-layered structure.
Figure 2: Main features of the PSV effect.
Figure 3: Measurements for different illumination/magnetization configurations.
Figure 4: Measurements using different light sources and optical filters.
Figure 5: Theoretical interpretation.
Figure 6: Control measurements.

Similar content being viewed by others

References

  1. Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001).

    ADS  Google Scholar 

  2. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    ADS  Google Scholar 

  3. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    ADS  Google Scholar 

  4. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    ADS  Google Scholar 

  5. Uchida, K. et al. Spin-Seebeck effects in Ni81Fe19/Pt films. Solid State Commun. 150, 524–528 (2010).

    ADS  Google Scholar 

  6. Jaworski, C. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    ADS  Google Scholar 

  7. Jaworski, C. et al. Spin-Seebeck effect: a phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011).

    ADS  Google Scholar 

  8. Jaworski, C., Myers, R., Johnston-Halperin, E. & Heremans, J. Giant spin Seebeck effect in a non-magnetic material. Nature 487, 210–213 (2012).

    ADS  Google Scholar 

  9. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    ADS  Google Scholar 

  10. Qu, D., Huang, S. Y., Hu, J., Wu, R. & Chien, C. L. Intrinsic spin Seebeck effect in Au/YIG. Phys. Rev. Lett. 110, 067206 (2013).

    ADS  Google Scholar 

  11. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).

    ADS  Google Scholar 

  12. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    ADS  Google Scholar 

  13. Day, C. Two groups observe the Spin Hall effect in semiconductors. Phys. Today 58, 17–19 (February, 2005).

    Google Scholar 

  14. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    ADS  Google Scholar 

  15. Sun, Y. & Wu, M. in Solid State Physics Vol. 64 (eds Wu, M. & Hoffmann, A.) (Academic, 2013).

    Google Scholar 

  16. Wu, M. in Advanced Magnetic Materials (ed. Malkinski, L.) (InTech, 2012).

    Google Scholar 

  17. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    ADS  Google Scholar 

  18. Kittel, C. Introduction to Solid State Physics 8th edn (John Wiley, 2005).

    MATH  Google Scholar 

  19. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Google Scholar 

  20. Huebener, R. P. & Seher, A. Nernst effect and flux flow in superconductors. I. Niobium. Phys. Rev. 181, 701–709 (1969).

    ADS  Google Scholar 

  21. Pu, Y., Johnston-Halperin, E., Awschalom, D. D. & Shi, J. Anisotropic thermopower and planar Nernst effect in Ga1−xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 97, 036601 (2006).

    ADS  Google Scholar 

  22. Huang, S. Y., Wang, W. G., Lee, S. F., Kwo, J. & Chien, C. L. Intrinsic spin-dependent thermal transport. Phys. Rev. Lett. 107, 216604 (2011).

    ADS  Google Scholar 

  23. Ky, V. D. The planar Nernst effect in permalloy films. Phys. Status Solidi B 17, K207–K209 (1966).

    ADS  Google Scholar 

  24. Avery, A. D., Pufall, M. R. & Zink, B. L. Observation of the planar Nernst effect in permalloy and nickel thin films with in-plane thermal gradients. Phys. Rev. Lett. 109, 196602 (2012).

    ADS  Google Scholar 

  25. Yin, S. L., Mao, Q., Meng, Q. Y., Li, D. & Zhao, H. W. Hybrid anomalous and planar Nernst effect in permalloy thin films. Phys. Rev. B 88, 064410 (2013).

    ADS  Google Scholar 

  26. Kehlberger, A. et al. Length scale of the spin Seebeck effect. Phys. Rev. Lett. 115, 096602 (2015).

    ADS  Google Scholar 

  27. Jakubisova-Liskova, E., Visnovsky, S., Chang, H. & Wu, M. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films. J. Appl. Phys. 117, 17B702 (2015).

    Google Scholar 

  28. Hughes, J. L. P. & Sipe, J. E. Calculation of second-order optical response in semiconductors. Phys. Rev. B 53, 10751–10763 (1996).

    ADS  Google Scholar 

  29. Huang, S. Y. et al. Transport magnetic proximity effects in platinum. Phys. Rev. Lett. 109, 107204 (2012).

    ADS  Google Scholar 

  30. Lu, Y. M. et al. Pt magnetic polarization on Y3Fe5O12 and magnetotransport characteristics. Phys. Rev. Lett. 110, 147207 (2013).

    ADS  Google Scholar 

  31. Zhou, X. et al. Tuning magnetotransport in PdPt/Y3Fe5O12: effects of magnetic proximity and spin-orbit coupling. Appl. Phys. Lett. 105, 012408 (2014).

    ADS  Google Scholar 

  32. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    ADS  Google Scholar 

  33. Leyder, C. et al. Observation of the optical spin Hall effect. Nature Phys. 3, 628–631 (2007).

    ADS  Google Scholar 

  34. Miah, M. Observation of the anomalous Hall effect in GaAs. J. Phys. D 40, 1659–1669 (2007).

    ADS  Google Scholar 

  35. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    ADS  Google Scholar 

  36. Ando, K. et al. Direct conversion of light-polarization information into electric voltage using photoinduced inverse spin-Hall effect in Pt/GaAs hybrid structure: spin photodetector. J. Appl. Phys. 107, 113902 (2010).

    ADS  Google Scholar 

  37. Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotech. 8, 256–260 (2013).

    ADS  Google Scholar 

  38. Endres, B. et al. Demonstration of the spin solar cell and spin photodiode effect. Nature Commun. 4, 2068 (2013).

    ADS  Google Scholar 

  39. Weiler, M. et al. Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett. 108, 106602 (2012).

    ADS  Google Scholar 

  40. Agrawal, M. et al. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys. Rev. B 89, 224414 (2014).

    ADS  Google Scholar 

  41. Li, P. et al. Generation of pure spin currents via spin Seebeck effect in self-biased hexagonal ferrite thin films. Appl. Phys. Lett. 105, 242412 (2014).

    ADS  Google Scholar 

  42. Roschewsky, N. et al. Time resolved spin Seebeck effect experiments. Appl. Phys. Lett. 104, 202410 (2014).

    ADS  Google Scholar 

  43. Uchida, K. et al. Generation of spin currents by surface plasmon resonance. Nature Commun. 6, 5910 (2015).

    ADS  Google Scholar 

  44. Fullerton, E. E. et al. Structure and magnetism of epitaxially strained Pd(001) films on Fe(001): experiment and theory. Phys. Rev. B 51, 6364–6378 (1995).

    ADS  Google Scholar 

  45. Bailey, W. E. et al. Pd magnetism induced by indirect interlayer exchange coupling. Phys. Rev. B 86, 144403 (2012).

    ADS  Google Scholar 

  46. Wilhelm, F. et al. Systematics of the induced magnetic moments in 5d layers and the violation of the third Hund’s rule. Phys. Rev. Lett. 87, 207202 (2001).

    ADS  Google Scholar 

  47. Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator - ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Army Research Office under Award W911NF-14-1-0501. In addition, the fabrication and structural characterization of YIG, YIG/Pt, YIG/Cu and GGG/Pt samples and the DFT calculations were supported by the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award SC0012670; the fabrication and structural characterization of BaM, BaM/Pt and BaM/Cu samples was supported by the C-SPIN, one of the SRC STARnet Centers sponsored by MARCO and DARPA; and the ferromagnetic resonance and spin pumping measurements were supported by the US National Science Foundation under Award ECCS-1231598. The authors would like to thank J. Sites and J. Raguse of the CSU Photovoltaics Laboratory for helpful discussions regarding optical spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

L.L., D.E. and M.W. conceived the idea and designed the experiments. L.L. established the experimental set-up. D.E. and L.L. performed the measurements and analysed the data. H.C. and P.L. fabricated and characterized the samples. B.J. contributed to the experimental set-up. Y.B. contributed to the measurements. J.L., J.X. and R.W. provided the theoretical model. J.L., Z.W. and J.H. performed the calculations. M.W. supervised the experimental study. R.W. supervised the theoretical study. D.E., J.L., R.W. and M.W. wrote the paper and the Supplementary Information with help from all the other co-authors.

Corresponding authors

Correspondence to Ruqian Wu or Mingzhong Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellsworth, D., Lu, L., Lan, J. et al. Photo-spin-voltaic effect. Nature Phys 12, 861–866 (2016). https://doi.org/10.1038/nphys3738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing