Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Applied and fundamental aspects of fusion science

Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The T-3A tokamak at the Kurchatov Institute of Atomic Energy.
Figure 2: Schematic of the working principle of a heavy-ion beam probe and photo of the corresponding hardware in the T-10 tokamak at the NRC 'Kurchatov Institute' (Moscow, Russia).
Figure 3: Geodesic acoustic modes (zonal flow) in a magnetically confined plasma.
Figure 4: GAMs in a magnetically confined plasma.
Figure 5: Observation of Alfvén eigenmodes in an ECR- and NBI-heated discharge in the TJ-II stellarator (CIEMAT, Madrid, Spain).
Figure 6: Power spectral density (PSD) of the magnetic perturbations caused by chirping modes, excited by energetic particles in fusion plasmas.

References

  1. Ongena, J., Koch, R., Wolf, R. & Zohm, H. Nature Phys. 12, 398–410 (2016).

    Article  ADS  Google Scholar 

  2. Shafranov, V. D. Phys. Usp. 44, 835 (2001).

    Article  ADS  Google Scholar 

  3. Peacock, N. J. et al. Nature 224, 488 (1969).

    Article  ADS  Google Scholar 

  4. Interview with Bernard Bigot. Nature Phys. 12, 395–397 (2016).

  5. Cowley, S. C. Nature Phys. 12, 384–386 (2016).

    Article  ADS  Google Scholar 

  6. Knaster, J., Moeslang, A. & Muroga, T. Nature Phys. 12, 424–434 (2016).

    Article  ADS  Google Scholar 

  7. Melnikov, A. V. Electric Potential in Toroidal Plasma Devices [in Russian] (MEPhI, Moscow, 2015).

    Google Scholar 

  8. Melnikov, A. V. et al. Nucl. Fusion 50, 084023 (2010).

    Article  ADS  Google Scholar 

  9. Esipchuk, Yu. V. & Razumova, K. A. Plasma Phys. Control. Fusion 28, 1253 (1986).

    Article  ADS  Google Scholar 

  10. Dnestrovskij, Yu. N. Self-organization of Hot Plasmas (Springer, 2015).

    Book  Google Scholar 

  11. Winsor, N., Johnson, J. & Dawson, J. Phys. Fluids 11, 2448 (1968).

    Article  ADS  Google Scholar 

  12. Schoch, P. M. Connor, K. A. Demers, D. R. & Zhang, X. Rev. Sci. Instrum. 74, 1846 (2003).

    Article  ADS  Google Scholar 

  13. McKee, G. R. et al. Plasma Phys. Control. Fusion 45, A477–A485 (2003).

    Article  Google Scholar 

  14. Melnikov, A. V. et al. Proc. 30th EPS Conf. Contr. Fusion and Plasma Phys. ECA Vol. 27A, 3.114 (ECA, 2003).

    Google Scholar 

  15. Melnikov, A. V. et al. Plasma Phys. Control. Fusion 48, S87 (2006).

    Article  Google Scholar 

  16. Ido, T. et al. Plasma Phys. Control. Fusion 48, S41 (2006).

    Article  Google Scholar 

  17. Melnikov, A. V. et al. Nucl. Fusion 55, 063001 (2015).

    Article  ADS  Google Scholar 

  18. Ilgisonis, V. I. et al. Plasma Phys. Control. Fusion 56, 035001 (2013).

    Article  ADS  Google Scholar 

  19. Heidbrink, W. W. Phys. Plasmas 15, 055501 (2008).

    Article  ADS  Google Scholar 

  20. Mazon, D., Fenzi, C. & Sabot, R. Nature Phys. 12, 14–17 (2016).

    Article  ADS  Google Scholar 

  21. Melnikov, A. V. et al. Nucl. Fusion 52, 123004 (2012).

    Article  ADS  Google Scholar 

  22. Berk, H. L. et al. Nucl. Fusion 46, S888 (2006).

    Article  Google Scholar 

  23. Di Pietro, E. et al. Fusion Eng. Design 89, 2128–2135 (2014).

    Article  Google Scholar 

  24. Melnikov, A. V. et al. Fusion Eng. Design 96–97, 306–310 (2015).

    Article  Google Scholar 

  25. http://www.ipp.mpg.de/14226/top_news (7 April 2016).

  26. Fasoli, A. et al. Nature Phys. 12, 411–423 (2016).

    Article  ADS  Google Scholar 

  27. Strelkov, V. S. Physical Basis of Plasma Diagnostics Methods in Tokamak [in Russian] (MEPhI, Moscow, 2004).

    Google Scholar 

Download references

Acknowledgements

This study was exclusively financially supported by the Russian Science Foundation, project 14-22-00193. I acknowledge the long-term collaboration between NRC 'Kurchatov Institute', Russia, Kharkov Institute of Physics and Technology, Ukraine, and CIEMAT, Spain and the joint HIBP team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A. Applied and fundamental aspects of fusion science. Nature Phys 12, 386–390 (2016). https://doi.org/10.1038/nphys3759

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing