Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resistivity plateau and extreme magnetoresistance in LaSb

Abstract

Time reversal symmetry (TRS) protects the metallic surface modes of topological insulators (TIs). The transport signature of such surface states is a plateau that arrests the exponential divergence of the insulating bulk with decreasing temperature. This universal behaviour is observed in all TI candidates ranging from Bi2Te2Se to SmB6. Recently, extreme magnetoresistance (XMR) has been reported in several topological semimetals which exhibit TI universal resistivity behaviour only when breaking time reversal symmetry, a regime where TIs theoretically cease to exist. Among these materials, TaAs and NbP are nominated as Weyl semimetals owing to their lack of inversion symmetry, Cd3As2 is known as a Dirac semimetal owing to its linear band crossing at the Fermi level, and WTe2 is termed a resonant compensated semimetal owing to its perfect electron–hole symmetry. Here we introduce LaSb, a simple rock-salt structure material that lacks broken inversion symmetry, perfect linear band crossing, and perfect electron–hole symmetry yet exhibits all the exotic field-induced behaviours of these more complex semimetals. It shows a field-induced universal TI resistivity with a plateau at roughly 15 K, ultrahigh mobility of carriers in the plateau region, quantum oscillations with the angle dependence of a two-dimensional Fermi surface, and XMR of about one million percent at 9 T. Owing to its structural simplicity, LaSb represents an ideal model system to formulate a theoretical understanding of the exotic consequences of breaking time reversal symmetry in topological semimetals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparing the pressure-tuned phenomenology of SmB6 with the field-tuned phenomenology of LaSb.
Figure 2: Temperature dependence of resistivity in LaSb.
Figure 3: Field dependence of resistivity in LaSb.
Figure 4: Hall effect and quantum oscillations in LaSb.
Figure 5: Angle dependence of SdH oscillations in LaSb.

Similar content being viewed by others

References

  1. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  2. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  3. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  ADS  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  5. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  ADS  Google Scholar 

  6. Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Article  ADS  Google Scholar 

  7. Jia, S. et al. Defects and high bulk resistivities in the Bi-rich tetradymite topological insulator Bi2+xTe2−xSe. Phys. Rev. B 86, 165119 (2012).

    Article  ADS  Google Scholar 

  8. Kim, D. J. et al. Surface Hall effect and nonlocal transport in SmB6: Evidence for surface conduction. Sci. Rep. 3, 3150 (2013).

    Article  Google Scholar 

  9. Kim, D. J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nature Mater. 13, 466–470 (2014).

    Article  ADS  Google Scholar 

  10. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  ADS  Google Scholar 

  11. Lenz, J. E. A review of magnetic sensors. Proc. IEEE 78, 973–989 (1990).

    Article  ADS  Google Scholar 

  12. Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996).

    Article  ADS  Google Scholar 

  13. Daughton, J. M. GMR applications. J. Magn. Magn. Mater. 192, 334–342 (1999).

    Article  ADS  Google Scholar 

  14. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).

    Article  ADS  Google Scholar 

  15. Huang, X. et al. Observation of the Chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  16. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nature Phys. 11, 728–732 (2015).

    Article  ADS  Google Scholar 

  17. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal NbP. Nature Phys. 11, 645–649 (2015).

    Article  ADS  Google Scholar 

  18. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nature Mater. 14, 280–284 (2015).

    Article  ADS  Google Scholar 

  19. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  20. Ali, M. N. et al. Correlation of crystal quality and extreme magnetoresistance of WTe2 . Europhys. Lett. 110, 67002 (2015).

    Article  ADS  Google Scholar 

  21. Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2 . Phys. Rev. Lett. 114, 176601 (2015).

    Article  ADS  Google Scholar 

  22. Ghimire, N. J. et al. Magnetotransport of single crystalline NbAs. J. Phys. Condens. Matter 27, 152201 (2015).

    Article  ADS  Google Scholar 

  23. Wang, K., Graf, D., Li, L., Wang, L. & Petrovic, C. Anisotropic giant magnetoresistance in NbSb2 . Sci. Rep. 4, 7328 (2014).

    Article  ADS  Google Scholar 

  24. Mun, E. et al. Magnetic field effects on transport properties of PtSn4 . Phys. Rev. B 85, 035135 (2012).

    Article  ADS  Google Scholar 

  25. Zeng, M. et al. Topological semimetals and topological insulators in rare earth monopnictides. Preprint at http://arXiv.org/abs/1504.03492 (2015).

  26. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).

    Article  ADS  Google Scholar 

  27. Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6 . Phys. Rev. B 88, 180405 (2013).

    Article  ADS  Google Scholar 

  28. Deacon, J. M. & Mackinnon, L. Ultrasonic quantum oscillations in white tin. J. Phys. F 3, 2082–2091 (1973).

    Article  ADS  Google Scholar 

  29. Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6 . Science 346, 1208–1212 (2014).

    Article  ADS  Google Scholar 

  30. Mikitik, G. P. & Sharlai, Y. V. Manifestation of Berry’s phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

    Article  ADS  Google Scholar 

  31. Wright, A. R. & McKenzie, R. H. Quantum oscillations and Berry’s phase in topological insulator surface states with broken particle–hole symmetry. Phys. Rev. B 87, 085411 (2013).

    Article  ADS  Google Scholar 

  32. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  33. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  34. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  ADS  Google Scholar 

  35. Tafti, F. F., Ishikawa, J. J., McCollam, A., Nakatsuji, S. & Julian, S. R. Pressure-tuned insulator to metal transition in Eu2Ir2O7 . Phys. Rev. B 85, 205104 (2012).

    Article  ADS  Google Scholar 

  36. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Commun. 5, 5161 (2014).

    Article  ADS  Google Scholar 

  37. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

    Article  ADS  Google Scholar 

  38. Jankowski, J., El-Ahmar, S. & Oszwaldowski, M. Hall sensors for extreme temperatures. Sensors 11, 876–885 (2011).

    Article  Google Scholar 

  39. Gabáni, S. et al. Pressure-induced Fermi-liquid behavior in the Kondo insulator SmB6 Possible transition through a quantum critical point. Phys. Rev. B 67, 172406 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Gordon and Betty Moore Foundation under the EPiQS programme, grant GBMF 4412. S.K.K. is supported by the ARO MURI on topological insulators, grant W911NF-12-1-0461.

Author information

Authors and Affiliations

Authors

Contributions

F.F.T. designed the experiment, grew single crystals, did the measurements, analysed data, and wrote the paper. Q.D.G. helped with DFT calculations and data analysis. S.K.K. helped with crystal growth. N.H. helped with the measurements. R.J.C. designed the experiment and wrote the paper.

Corresponding author

Correspondence to F. F. Tafti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafti, F., Gibson, Q., Kushwaha, S. et al. Resistivity plateau and extreme magnetoresistance in LaSb. Nature Phys 12, 272–277 (2016). https://doi.org/10.1038/nphys3581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing