Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entangling atomic spins with a Rydberg-dressed spin-flip blockade

Abstract

Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. Here we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shifts of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. We employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experiment sequence.
Figure 2: Rydberg-dressed ground-state interaction J and the spin-flip blockade.
Figure 3: Generating entanglement directly.
Figure 4: Entanglement verification.

Similar content being viewed by others

References

  1. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  ADS  Google Scholar 

  2. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  3. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    Article  ADS  Google Scholar 

  4. O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  5. Brown, K. et al. Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A 84, 030303 (2011).

    Article  ADS  Google Scholar 

  6. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article  ADS  Google Scholar 

  7. Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  8. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    Article  ADS  Google Scholar 

  9. Zhang, X., Isenhower, L., Gill, A., Walker, T. & Saffman, M. Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A 82, 030306 (2010).

    Article  ADS  Google Scholar 

  10. Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010).

    Article  ADS  Google Scholar 

  11. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  12. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10–18 level. Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  13. Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    Article  ADS  Google Scholar 

  14. Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013).

    Article  ADS  Google Scholar 

  15. Parazzoli, L. P., Hankin, A. M. & Biederman, G. W. Observation of free-space single-atom matterwave interference. Phys. Rev. Lett. 109, 230401 (2012).

    Article  ADS  Google Scholar 

  16. Steffen, A. et al. Digital atom interferometer with single particle control on a discretized space-time geometry. Proc. Natl Acad. Sci. USA 109, 9770–9774 (2012).

    Article  ADS  Google Scholar 

  17. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  18. Glaetzle, A. W. et al. Designing frustrated quantum magnets with laser-dressed Rydberg atoms. Phys. Rev. Lett. 114, 173002 (2015).

    Article  ADS  Google Scholar 

  19. Brennen, G. K., Caves, C. M., Jessen, P. S. & Deutsch, I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999).

    Article  ADS  Google Scholar 

  20. Jaksch, D., Briegel, H.-J., Cirac, J., Gardiner, C. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  Google Scholar 

  21. Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    Article  ADS  Google Scholar 

  22. Lukin, M. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    Article  ADS  Google Scholar 

  23. Hankin, A. M. et al. Two-atom Rydberg blockade using direct 6s to np excitation. Phys. Rev. A 89, 033416 (2014).

    Article  ADS  Google Scholar 

  24. Isenhower, L. et al. Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett. 104, 010503 (2010).

    Article  ADS  Google Scholar 

  25. Bouchoule, I. & Mølmer, K. Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states. Phys. Rev. A 65, 041803 (2002).

    Article  ADS  Google Scholar 

  26. Johnson, J. & Rolston, S. Interactions between Rydberg-dressed atoms. Phys. Rev. A 82, 033412 (2010).

    Article  ADS  Google Scholar 

  27. Balewski, J. B. et al. Rydberg dressing: Understanding of collective many-body effects and implications for experiments. New J. Phys. 16, 063012 (2014).

    Article  ADS  Google Scholar 

  28. Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I. & Zoller, P. Strongly correlated gases of Rydberg-dressed atoms: Quantum and classical dynamics. Phys. Rev. Lett. 104, 223002 (2010).

    Article  ADS  Google Scholar 

  29. Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the s = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    Article  ADS  Google Scholar 

  30. Keating, T. et al. Adiabatic quantum computation with Rydberg-dressed atoms. Phys. Rev. A 87, 052314 (2013).

    Article  ADS  Google Scholar 

  31. Keating, T. et al. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing. Phys. Rev. A 91, 012337 (2015).

    Article  ADS  Google Scholar 

  32. Schwettmann, A., Crawford, J., Overstreet, K. & Shaffer, J. Cold cs Rydberg-gas interactions. Phys. Rev. A 74, 020701 (2006).

    Article  ADS  Google Scholar 

  33. Bollinger, J., Itano, W., Wineland, D. & Heinzen, D. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).

    Article  ADS  Google Scholar 

  34. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank L. P. Parazzoli and C. W. Chou for their early work on the experimental system. We also thank J. Lee for comments on the manuscript. This work was supported by the Laboratory Directed Research and Development programme at Sandia National Laboratories and through the National Science Foundation’s Center for Quantum Information and Control NSF-1212445.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work by Y.-Y.J., A.M.H. and G.W.B. Numerical modelling by Y.-Y.J. Theoretical work by I.H.D. and T.K.

Corresponding author

Correspondence to G. W. Biedermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jau, YY., Hankin, A., Keating, T. et al. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nature Phys 12, 71–74 (2016). https://doi.org/10.1038/nphys3487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing