Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The free-energy cost of accurate biochemical oscillations

Abstract

Oscillations within the cell regulate the timing of many important life cycles. However, in this noisy environment, oscillations can be highly inaccurate owing to phase fluctuations. It remains poorly understood how biochemical circuits suppress these phase fluctuations and what is the incurred thermodynamic cost. Here, we study three different types of biochemical oscillation, representing three basic oscillation motifs shared by all known oscillatory systems. In all the systems studied, we find that the phase diffusion constant depends on the free-energy dissipation per period, following the same inverse relation parameterized by system-specific constants. This relationship and its range of validity are shown analytically in a model of noisy oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles that hydrolyse fuel molecules such as ATP; the number of phase coherent periods is proportional to the free energy consumed per period. Experimental evidence in support of this general relationship and testable predictions are also presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different network motifs and the corresponding biochemical oscillatory systems.
Figure 2: Correlation and phase diffusion of the noisy oscillations in the activator–inhibitor model.
Figure 3: Relation between the dimensionless diffusion constant (D/T) and free-energy dissipation per period per volume (ΔW, in units of thermal energy kBTr, with Tr the room temperature).
Figure 4: The dependence of phase diffusion on the ATP, ADP and Pi concentrations.
Figure 5: Experimental evidence from ref. 36 (blue curve) and ref. 35 (red curve).
Figure 6: Oscillation coherence increases with the number of ATP hydrolysed per period.

Similar content being viewed by others

References

  1. Eisenberg, E. & Hill, T. L. Muscle contraction and free energy transduction in biological systems. Science 227, 999–1006 (1985).

    ADS  Google Scholar 

  2. Hill, T. L. Free Energy Transduction and Biochemical Cycle Kinetics (Academic, 1977).

    Google Scholar 

  3. Qian, H. & Beard, D. A. Chemical Biophysics: Quantitative Analysis of Cellular Systems (Cambridge Univ. Press, 2008).

    MATH  Google Scholar 

  4. Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (1997).

    ADS  Google Scholar 

  5. Nelson, D. L., Lehninger, A. L. & Cox, M. M. Lehninger Principles of Biochemistry (Macmillan, 2008).

    Google Scholar 

  6. Bialek, W. & Setayeshgar, S. Physical limits to biochemical signaling. Proc. Natl Acad. Sci. USA 102, 10040–10045 (2005).

    ADS  Google Scholar 

  7. Hu, B., Chen, W., Rappel, W. J. & Levine, H. Physical limits on cellular sensing of spatial gradients. Phys. Rev. Lett. 105, 048104 (2010).

    ADS  Google Scholar 

  8. Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy–speed–accuracy tradeoff in sensory adaptation. Nature Phys. 8, 422–428 (2012).

    ADS  Google Scholar 

  9. Lan, G. & Tu, Y. The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop. J. R. Soc. Interface 10, 20130489 (2013).

    Google Scholar 

  10. Skoge, M., Naqvi, S., Meir, Y. & Wingreen, N. S. Chemical sensing by nonequilibrium cooperative receptors. Phys. Rev. Lett. 110, 248102 (2013).

    ADS  Google Scholar 

  11. Lang, A. H., Fisher, C. K., Mora, T. & Mehta, P. Thermodynamics of statistical inference by cells. Phys. Rev. Lett. 113, 148103 (2014).

    ADS  Google Scholar 

  12. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge Univ. Press, 1996).

    MATH  Google Scholar 

  13. Martiel, J. L. & Goldbeter, A. A model based on receptor desensitization for cyclic amp signaling in dictyostelium cells. Biophys. J. 52, 807–828 (1987).

    MATH  Google Scholar 

  14. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: Hysteresis and bistability in the activation of cdc2. Nature Cell Biol. 5, 346–351 (2003).

    Google Scholar 

  15. Tsai, T. Y.-C. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    ADS  Google Scholar 

  16. Ferrell, J. J., Tsai, T. Y. & Yang, Q. Modeling the cell cycle: Why do certain circuits oscillate? Cell 144, 874–885 (2011).

    Google Scholar 

  17. Hogenesch, J. B. & Ueda, H. R. Understanding systems-level properties: Timely stories from the study of clocks. Nature Rev. Genet. 12, 407–416 (2011).

    Google Scholar 

  18. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    ADS  Google Scholar 

  19. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    ADS  Google Scholar 

  20. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nature Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Google Scholar 

  21. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    ADS  Google Scholar 

  22. van Dorp, M., Lannoo, B. & Carlon, E. Generation of oscillating gene regulatory network motifs. Phys. Rev. E 88, 012722 (2013).

    ADS  Google Scholar 

  23. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005).

    Article  ADS  Google Scholar 

  24. Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O’Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007).

    Article  ADS  Google Scholar 

  25. Goldbeter, A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl Acad. Sci. USA 88, 9107–9111 (1991).

    ADS  Google Scholar 

  26. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Jr. Systems-level dissection of the cell-cycle oscillator: Bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005).

    Google Scholar 

  27. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    ADS  Google Scholar 

  28. Prindle, A. et al. A sensing array of radically coupled genetic biopixels. Nature 481, 39–44 (2012).

    ADS  Google Scholar 

  29. Krishna, S., Jensen, M. H. & Sneppen, K. Minimal model of spiky oscillations in nf-κb signaling. Proc. Natl Acad. Sci. USA 103, 10840–10845 (2006).

    ADS  Google Scholar 

  30. Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, 2006.0033 (2006).

    Google Scholar 

  31. Szallasi, Z., Stelling, J. & Periwal, V. System Modeling in Cell Biology: From Concepts to Nuts and Bolts (MIT Press, 2006).

    MATH  Google Scholar 

  32. Goldbeter, A. & Lefever, R. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972).

    ADS  Google Scholar 

  33. Dupont, G., Berridge, M. & Goldbeter, A. Signal-induced Ca2+ oscillations: Properties of a model based on Ca2+-induced Ca2+ release. Cell Calcium 12, 73–85 (1991).

    Google Scholar 

  34. Qian, H. Phosphorylation energy hypothesis: Open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007).

    ADS  Google Scholar 

  35. Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011).

    ADS  Google Scholar 

  36. Phong, C., Markson, J. S., Wilhoite, C. M. & Rust, M. J. Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc. Natl Acad. Sci. USA 110, 1124–1129 (2013).

    ADS  Google Scholar 

  37. Tome, T. & de Oliveira, M. J. Entropy production in irreversible systems described by a Fokker–Planck equation. Phys. Rev. E 82, 021120 (2010).

    ADS  Google Scholar 

  38. Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

    ADS  Google Scholar 

  39. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

    ADS  Google Scholar 

  40. Terauchi, K. et al. Atpase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc. Natl Acad. Sci. USA 104, 16377–16381 (2007).

    ADS  Google Scholar 

  41. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    ADS  Google Scholar 

  42. Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

    Google Scholar 

  43. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys. 81, 2340–2361 (1977).

    Google Scholar 

Download references

Acknowledgements

We thank M. Rust for sharing the experimental data in refs 35, 36. This work is partly supported by a NIH grant (R01GM081747 to Y.T.), a NSFC grant (11434001 to Q.O.) and a MSTC grant (2012AA02A702 to Q.O.).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and Q.O. initiated the work; Y.C., H.W., Q.O. and Y.T. designed the research; Y.C. performed simulations; Y.C. and Y.T. contributed to the analytical results; Y.C., Q.O. and Y.T. wrote the paper.

Corresponding authors

Correspondence to Qi Ouyang or Yuhai Tu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Wang, H., Ouyang, Q. et al. The free-energy cost of accurate biochemical oscillations. Nature Phys 11, 772–778 (2015). https://doi.org/10.1038/nphys3412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing