Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneously broken time-reversal symmetry in high-temperature superconductors

Abstract

Conventional superconductors are strong diamagnets that, through the Meissner effect, expel magnetic fields. It would therefore be surprising if a superconducting ground state would support spontaneous magnetics fields. Such time-reversal symmetry-broken states have been proposed for the high-temperature superconductors, but their identification remains experimentally controversial. Here we show a route to a low-temperature superconducting state with broken time-reversal symmetry that may accommodate currently conflicting experiments. This state is characterized by an unusual vortex pattern in the form of a necklace of fractional vortices around the perimeter of the material, where neighbouring vortices have opposite current circulation. This vortex pattern is a result of a spectral rearrangement of current-carrying states near the edges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of small d-wave superconductor grains.
Figure 2: Temperature-dependent density of states.
Figure 3: Local spectral-current densities.
Figure 4: Edge currents and spontaneous magnetic-field profile.
Figure 5: Tunnelling density of states and magnetic-field distribution.

Similar content being viewed by others

References

  1. Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

    ADS  Google Scholar 

  2. Tsuei, C. C. et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−δ . Phys. Rev. Lett. 73, 593–596 (1994).

    ADS  Google Scholar 

  3. Covington, M. et al. Observation of surface-induced broken time-reversal symmetry in YBa2Cu3O7 tunnel junctions. Phys. Rev. Lett. 79, 277–280 (1997).

    ADS  Google Scholar 

  4. Krishana, K., Ong, N. P., Li, Q., Gu, G. D. & Koshizuka, N. Plateaus observed in the field profile of thermal conductivity in the superconductor Bi2Sr2CaCu2O8 . Science 277, 83–85 (1997).

    Google Scholar 

  5. Dagan, Y. & Deutscher, G. Doping and magnetic field dependence of in-plane tunneling into YBa2Cu3O7−x: Possible evidence for the existence of a quantum critical point. Phys. Rev. Lett. 87, 177004 (2001).

    ADS  Google Scholar 

  6. Gonnelli, R. S. et al. Evidence for pseudogap and phase-coherence gap separation by Andreev reflection experiments in Au/La2−xSrxCuO4 point-contact junctions. Eur. Phys. J. B 22, 411–414 (2001).

    ADS  Google Scholar 

  7. Elhalel, G., Beck, R., Leibovitch, G. & Deutscher, G. Transition from a mixed to a pure d-wave symmetry in superconducting optimally doped YBa2Cu3O7−x thin films under applied fields. Phys. Rev. Lett. 98, 137002 (2007).

    ADS  Google Scholar 

  8. Gustafsson, D. et al. Fully gapped superconductivity in a nanometre-size YBa2Cu3O7−δ island enhanced by a magnetic field. Nature Nanotech. 8, 25–30 (2013).

    ADS  Google Scholar 

  9. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

    ADS  Google Scholar 

  10. Carmi, R., Polturak, E., Koren, G. & Auerbach, A. Spontaneous macroscopic magnetization at the superconducting transition temperature of YBa2Cu3O7−δ . Nature 404, 853–855 (2000).

    ADS  Google Scholar 

  11. Neils, W. K. & Van Harlingen, D. J. Experimental test for subdominant superconducting phases with complex order parameters in cuprate grain boundary junctions. Phys. Rev. Lett. 88, 047001 (2002).

    ADS  Google Scholar 

  12. Kirtley, J. R. et al. Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7−δ . Nature Phys. 2, 190–194 (2006).

    ADS  Google Scholar 

  13. Saadaoui, H. et al. Search for broken time-reversal symmetry near the surface of superconducting YBa2Cu3O7−δ films using β-detected nuclear magnetic resonance. Phys. Rev. B 83, 054504 (2011).

    ADS  Google Scholar 

  14. Yip, S.-K. & Garg, A. Superconducting states of reduced symmetry: General order parameters and physical implications. Phys. Rev. B 48, 3304–3308 (1993).

    ADS  Google Scholar 

  15. Schemm, E. R., Gannon, W. J., Wishne, C. M., Halperin, W. P. & Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3 . Science 345, 190–193 (2014).

    ADS  Google Scholar 

  16. Buchholtz, L. J. & Zwicknagl, G. Identification of p-wave superconductors. Phys. Rev. B 23, 5788–5796 (1981).

    ADS  Google Scholar 

  17. Hu, C. R. Midgap surface states as a novel signature for dx a2x b2-wave superconductivity. Phys. Rev. Lett. 72, 1526–1529 (1994).

    ADS  Google Scholar 

  18. Löfwander, T., Shumeiko, V. S. & Wendin, G. Andreev bound states in high-Tc superconducting junctions. Supercond. Sci. Technol. 14, R53–R77 (2001).

    ADS  Google Scholar 

  19. Tanaka, Y. & Kashiwaya, S. Theory of tunnelling spectroscopy of d-wave superconductors. Phys. Rev. Lett. 74, 3451–3454 (1995).

    ADS  Google Scholar 

  20. Kashiwaya, S. & Tanaka, Y. Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 63, 1641–1724 (2000).

    ADS  Google Scholar 

  21. Vorontsov, A. B. Broken translational and time-reversal symmetry in unconventional superconducting films. Phys. Rev. Lett. 102, 177001 (2009).

    ADS  Google Scholar 

  22. Matsumoto, M. & Shiba, H. Coexistence of different symmetry order parameters near a surface in d-wave superconductors I. J. Phys. Soc. Jpn 64, 3384–3396 (1995).

    ADS  Google Scholar 

  23. Fogelström, M., Rainer, D. & Sauls, J. A. Tunneling into current-carrying surface states of high-Tc superconductors. Phys. Rev. Lett. 79, 281–284 (1997).

    ADS  Google Scholar 

  24. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964).

    ADS  Google Scholar 

  25. Larkin, A. I. & Ovchinnikov, Yu. N. Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965).

    MathSciNet  Google Scholar 

  26. Palumbo, M., Muzikar, P. & Sauls, J. A. Magnetic instabilities in unconventional superconductors. Phys. Rev. B 42, 2681–2683 (1990).

    ADS  Google Scholar 

  27. Sigrist, M. & Rice, T. M. Unusual paramagnetic phenomena in granular high-temperature superconductors—a consequence of d-wave pairing. Rev. Mod. Phys. 67, 503–513 (1995).

    ADS  Google Scholar 

  28. Fogelström, M. & Yip, S.-K. Time-reversal symmetry-breaking states near grain boundaries between d-wave superconductors. Phys. Rev. B 57, R14060–R14063 (1998).

    ADS  Google Scholar 

  29. Higashitani, S. Mechanism of paramagnetic Meissner effect in high-temperature superconductors. J. Phys. Soc. Jpn 66, 2556–2559 (1997).

    ADS  Google Scholar 

  30. Barash, Y. S., Kalenkov, M. S. & Kurkijärvi, J. Low-temperature magnetic penetration depth in d-wave superconductors: Zero-energy bound state and impurity effects. Phys. Rev. B 62, 6665–6673 (2000).

    ADS  Google Scholar 

  31. Löfwander, T., Shumeiko, V. S. & Wendin, G. Time-reversal symmetry breaking at Josephson tunnel junctions of purely d-wave superconductors. Phys. Rev. B 62, R14653–R14656 (2000).

    ADS  Google Scholar 

  32. Eschrig, M. et al. Symmetries of pairing correlations in superconductor ferromagnet nanostructures. J. Low Temp. Phys. 147, 457–476 (2007).

    ADS  Google Scholar 

  33. Higashitani, S. Odd-frequency pairing effect on the superfluid density and the Pauli spin susceptibility in spatially nonuniform spin-singlet superconductors. Phys. Rev. B 89, 184505 (2014).

    ADS  Google Scholar 

  34. Suzuki, S.-I. & Asano, Y. Paramagnetic instability of small topological superconductors. Phys. Rev. B 89, 184508 (2014).

    ADS  Google Scholar 

  35. Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nature Nanotech. 8, 639–644 (2013).

    ADS  Google Scholar 

  36. Black-Schaffer, A. M., Golubev, D., Bauch, T., Lombardi, F. & Fogelström, M. Model evidence of a superconducting state with a full energy gap in small cuprate islands. Phys. Rev. Lett. 110, 197001 (2013).

    ADS  Google Scholar 

  37. Serene, J. M. & Rainer, D. The quasiclassical approach to superfluid 3He. Phys. Rep. 101, 221–311 (1983).

    ADS  Google Scholar 

  38. Nagato, Y., Nagai, K. & Hara, J. Theory of the Andreev reflection and the density-of-states in proximity contact normal-superconducting infinite double-layer. J. Low. Temp. Phys. 93, 33–56 (1993).

    ADS  Google Scholar 

  39. Schopohl, N. & Maki, K. Quasiparticle spectrum around a vortex line in a d-wave superconductor. Phys. Rev. B 52, 490–493 (1995).

    ADS  Google Scholar 

  40. Sauls, J. A. & Eschrig, M. Vortices in chiral, spin-triplet superconductors and superfluids. New J. Phys. 11, 075008 (2009).

    ADS  Google Scholar 

  41. Vorontsov, A. B. & Sauls, J. A. Thermodynamic properties of thin films of superfluid 3He–A. Phys. Rev. B 68, 064508 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the Swedish Research Council (VR) via the Linnaeus Center on Engineered Quantum Systems and projects 621-2011-4299 and 621-2012-4597, as well as the Knut and Alice Wallenberg Foundation for financial support. The authors thank A. Vorontsov, J. Sauls, T. Bauch and F. Lombardi for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.H. prepared and performed the numerical computations and produced all the figures. T.L. and M.F. wrote the paper and supervised the project. All authors planned, analysed and discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Tomas Löfwander or Mikael Fogelström.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Håkansson, M., Löfwander, T. & Fogelström, M. Spontaneously broken time-reversal symmetry in high-temperature superconductors. Nature Phys 11, 755–760 (2015). https://doi.org/10.1038/nphys3383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing