Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves

Subjects

Abstract

The coupling of spin and heat gives rise to new physical phenomena in nanoscale spin devices. In particular, spin-transfer torque (STT) driven by thermal transport provides a new way to manipulate local magnetization. We quantify thermal STT in metallic spin-valve structures using an intense and ultrafast heat current created by picosecond pulses of laser light. Our result shows that thermal STT consists of demagnetization-driven and spin-dependent Seebeck effect (SDSE)-driven components; the SDSE-driven STT becomes dominant after 3 ps. The sign and magnitude of the SDSE-driven STT can be controlled by the composition of a ferromagnetic layer and the thickness of a heat sink layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual diagram.
Figure 2: Thermal analysis.
Figure 3: Spin accumulation in Cu.
Figure 4: STT on CoFeB at long timescales.
Figure 5: STT on CoFeB at short timescales.
Figure 6: The effect of SDSE on STT.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    ADS  Google Scholar 

  3. Tsoi, M. et al. Excitations of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  ADS  Google Scholar 

  4. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  ADS  Google Scholar 

  5. Schellekens, A. J., Kuiper, K. C., de Wit, R. R. J. C. & Koopmans, B. Utrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nature Commun. 5, 4333 (2014).

    Article  ADS  Google Scholar 

  6. Choi, G-M., Min, B-C., Lee, K-J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nature Commun. 5, 4334 (2014).

    Article  ADS  Google Scholar 

  7. Hatami, M., Bauer, G. E. W., Zhang, Q. & Kelly, P. J. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).

    Article  ADS  Google Scholar 

  8. Slonczewski, J. C. Initiation of spin-transfer torque by thermal transport from magnons. Phys. Rev. B 82, 054403 (2010).

    Article  ADS  Google Scholar 

  9. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  ADS  Google Scholar 

  10. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  ADS  Google Scholar 

  11. Le Breton, J-C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82–85 (2011).

    Article  ADS  Google Scholar 

  12. Yu, H., Granville, S., Yu, D. P. & Ansermet, J-Ph. Evidence for thermal spin-transfer torque. Phys. Rev. Lett. 104, 146601 (2010).

    Article  ADS  Google Scholar 

  13. Flipse, J., Dejene, F. K. & van Wees, B. J. Comparison between thermal and current driven spin-transfer torque in nanopillar metallic spin valves. Phys. Rev. B 90, 104411 (2014).

    Article  ADS  Google Scholar 

  14. Malinowski, G. et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nature Phys. 4, 855–858 (2008).

    Article  ADS  Google Scholar 

  15. Battiato, M., Carva, K. & Oppeneer, P. M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 105, 027203 (2010).

    Article  ADS  Google Scholar 

  16. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature Mater. 9, 259–265 (2010).

    Article  ADS  Google Scholar 

  17. Mueller, B. Y. et al. Driving force of ultrafast magnetization dynamics. New J. Phys. 13, 123010 (2011).

    Article  Google Scholar 

  18. Manchon, A., Li, Q., Xu, L. & Zhang, S. Theory of laser-induced demagnetization at high temperature. Phys. Rev. B 85, 064408 (2012).

    Article  ADS  Google Scholar 

  19. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Article  ADS  Google Scholar 

  20. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

    Article  ADS  Google Scholar 

  21. Nguyen, H. Y. T. et al. Conduction electron scattering and spin flipping at sputtered Co/Ni interfaces. Phys. Rev. B 82, 220401(R) (2010).

    Article  ADS  Google Scholar 

  22. Nguyen, H. Y. T. et al. Spin-flipping in Pt and at Co/Pt interfaces. J. Magn. Magn. Mater. 361, 30–33 (2014).

    Article  ADS  Google Scholar 

  23. Mott, N. F. The resistance and thermoelectric properties of the transition metals. Proc. R. Soc. Lond. A 156, 368–382 (1936).

    Article  ADS  Google Scholar 

  24. Mott, N. F. The electrical conductivity of transition metals. Proc. R. Soc. Lond. A 153, 699–717 (1936).

    Article  ADS  Google Scholar 

  25. Mcguire, T. R. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  ADS  Google Scholar 

  26. Uba, S. et al. Optical and magneto-optical properties of Co/Pt multilayers. Phys. Rev. B 53, 6526–6535 (1996).

    Article  ADS  Google Scholar 

  27. Hu, S., Itoh, H. & Kimura, T. Efficient thermal spin injection using CoFeAl nanowire. NPG Asia Mater. 6, e127 (2014).

    Article  Google Scholar 

  28. Hohlfeld, J. et al. Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000).

    Article  Google Scholar 

  29. Caffrey, A. P., Hopkins, P. E., Klopf, J. M. & Norris, P. M. Thin film non-noble transition metal thermophysical properties. Microscale Thermophys. Eng. 9, 365–377 (2005).

    Article  Google Scholar 

  30. Wang, W. & Cahill, D. G. Limits to thermal transport in nanoscale metal bilayers due to weak electron–phonon coupling in Au and Cu. Phys. Rev. Lett. 109, 175503 (2012).

    Article  ADS  Google Scholar 

  31. Choi, G-M., Wilson, R. B. & Cahill, D. G. Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer. Phys. Rev. B 89, 064307 (2014).

    Article  ADS  Google Scholar 

  32. Niimi, Y. et al. Experimental verification of comparability between spin–orbit and spin-diffusion lengths. Phys. Rev. Lett. 110, 016805 (2013).

    Article  ADS  Google Scholar 

  33. Kimura, T., Sato, T. & Otani, Y. Temperature evolution of spin relaxation in a NiFe/Cu lateral spin valve. Phys. Rev. Lett. 100, 066602 (2008).

    Article  ADS  Google Scholar 

  34. Barnaś, J., Fert, A., Gmitra, M., Weymann, I. & Dugaev, V. K. From giant magnetoresistance to current-induced switching by spin transfer. Phys. Rev. B 72, 024426 (2005).

    Article  ADS  Google Scholar 

  35. Zwierzycki, M., Tserkovnyak, Y., Kelly, P. J., Brataas, A. & Bauer, G. E. W. First-principles study of magnetization relaxation enhancement and spin transfer in thin magnetic films. Phys. Rev. B 71, 064420 (2005).

    Article  ADS  Google Scholar 

  36. Bass, J. & Pratt, W. P. Jr Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

    Article  ADS  Google Scholar 

  37. Kurt, H., Loloee, R., Eid, K., Pratt, W. P. Jr & Bass, J. Spin-memory loss at 4.2 K in sputtered Pd and Pt and at Pd/Cu and Pt/Cu interfaces. Appl. Phys. Lett. 81, 4787–4789 (2002).

    Article  ADS  Google Scholar 

  38. Moreau, C. E., Moraru, I. C., Birge, N. O. & Pratt, W. P. Jr Measurement of spin diffusion length in sputtered Ni films using a special exchange-biased spin valve geometry. Appl. Phys. Lett. 90, 012101 (2007).

    Article  ADS  Google Scholar 

  39. Sharma, A. et al. Specific resistance and scattering asymmetry of Py/Pd, Fe/V, Fe/Nb, and Co/Pt interfaces. J. Appl. Phys. 102, 113916 (2007).

    Article  ADS  Google Scholar 

  40. Slonczewski, J. C. Currents and torques in metallic magnetic multilayers. J. Magn. Magn. Mater. 247, 324–338 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

TDTR and TR-MOKE measurements were carried out in the Laser and Spectroscopy Laboratory of the Materials Research Laboratory at the University of Illinois Urbana-Champaign. Sample growth and VSM measurements were carried out at the Korea Institute of Science and Technology (KIST). G-M.C. and D.G.C. were supported by the Army Research Office MURI W911NF-14-1-0016. C-H.M. and B-C.M. were supported by the KIST institutional program and the Pioneer Research Center Program of MSIP/NRF (2011-0027905). K-J.L. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2013R1A2A2A01013188) and the KU-KIST Graduate School of Converging Science and Technology Program.

Author information

Authors and Affiliations

Authors

Contributions

G-M.C. designed the experiment with B-C.M., K-J.L. and D.G.C.; C-H.M. prepared samples and measured VSM data with the help of B-C.M.; G-M.C. measured TR-MOKE and TDTR data with the help of D.G.C.; G-M.C. analysed all data with the help of B-C.M., K-J.L. and D.G.C.; all authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Gyung-Min Choi or David G. Cahill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, GM., Moon, CH., Min, BC. et al. Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves. Nature Phys 11, 576–581 (2015). https://doi.org/10.1038/nphys3355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing