Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic field effects in hybrid perovskite devices

Abstract

Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin–orbit coupling in these materials gives rise to long spin relaxation times. As the spin–orbit coupling is strong in organic–inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron–hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron–hole pairs with different g-factors—the Δg model. We validate this model by measuring large Δg ( 0.65) using field-induced circularly polarized photoluminescence, and electron–hole pair lifetime using picosecond pump–probe spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and Δg spin-mixing mechanism for the MFEs in organic–inorganic hybrid perovskites.
Figure 2: Device performance, MPC(B) and MEL(B) responses measured using the CH3NH3PbI3−xClx photovoltaic device 2, and MPL(B) response in the pristine perovskite film.
Figure 3: Device performance and various MFE(B) responses measured using the CH3NH3PbI3−xClx device 4 and film, and compilation of various MFE responses of devices and films into a ‘universal plot’.
Figure 4: Field-induced circularly polarized PL emission from CH3NH3PbI3−xClx perovskite film at high field, B, and low temperatures.
Figure 5: Picosecond transient response of different CH3NH3PbI3−xClx films.

Similar content being viewed by others

References

  1. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  2. Kim, H-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  4. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  5. Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014).

    Article  ADS  Google Scholar 

  6. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 18, 295–298 (2014).

    Article  ADS  Google Scholar 

  7. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photon. 8, 506–514 (2014).

    Article  ADS  Google Scholar 

  8. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  9. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  ADS  Google Scholar 

  10. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  11. Kim, H-S. et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Commun. 4, 2242 (2013).

    Article  ADS  Google Scholar 

  12. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  13. Tan, Z-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnol. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  14. Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nature Commun. 5, 3461 (2014).

    Article  ADS  Google Scholar 

  15. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commun. 5, 3586 (2014).

    Article  ADS  Google Scholar 

  16. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  Google Scholar 

  17. Sun, D., Ehrenfreund, E. & Vardeny, Z. V. The first decade of organic spintronics research. Chem. Commun. 50, 1781–1793 (2014).

    Article  Google Scholar 

  18. Sagar, R. U. R., Zhang, X. Z., Wang, J. M. & Xiong, C. Y. Negative magnetoresistance in undoped semiconducting amorphous carbon films. J. Appl. Phys. 115, 123708 (2014).

    Article  ADS  Google Scholar 

  19. Devir-Wolfman, A. H. et al. Short-lived charge transfer excitons in organic photovoltaic cells studied by high field magneto-photocurrent. Nature Commun. 5, 4529 (2014).

    Article  ADS  Google Scholar 

  20. Wang, J., Chepelianskii, A., Gao, F. & Greenham, N. C. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nature Commun. 3, 1191 (2012).

    Article  ADS  Google Scholar 

  21. Gautam, B. R., Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Magnetic field effect on excited-state spectroscopies of π-conjugated polymer films. Phys. Rev. B 85, 205207 (2012).

    Article  ADS  Google Scholar 

  22. Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    Article  Google Scholar 

  23. Bloom, F. L., Wagemans, W., Kemerink, M. & Koopmans, B. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys. Rev. Lett. 99, 257201 (2007).

    Article  ADS  Google Scholar 

  24. Hu, B., Yan, L. & Shao, M. Magnetic-field effects in organic semiconducting materials and devices. Adv. Mater. 21, 1500–1516 (2009).

    Article  Google Scholar 

  25. Nguyen, T. D. et al. Isotope effect in spin response of π-conjugated polymer films and devices. Nature Mater. 9, 345–352 (2010).

    Article  ADS  Google Scholar 

  26. You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014).

    Article  Google Scholar 

  27. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  28. Filippetti, A. & Mattoni, A. Hybrid perovskites for photovoltaics: Insights from first principles. Phys. Rev. B 89, 125203 (2014).

    Article  ADS  Google Scholar 

  29. Iribarren, A., Castro-Rodríguez, R., Sosa, V. & Peña, J. L. Modeling of the disorder contribution to the band-tail parameter in semiconductor materials. Phys. Rev. B 60, 4758–4762 (1999).

    Article  ADS  Google Scholar 

  30. Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photon. 8, 250–255 (2014).

    Article  ADS  Google Scholar 

  31. Yin, W-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  ADS  Google Scholar 

  32. Liang, P. W. et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).

    Article  Google Scholar 

  33. Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014).

    Article  Google Scholar 

  34. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014).

    Article  Google Scholar 

  35. Dersch, H., Schweitzer, L. & Stuke, J. Recombination processes in α-Si:H: Spin-dependent photoconductivity. Phys. Rev. B 28, 4678–4684 (1983).

    Article  ADS  Google Scholar 

  36. Nakanotani, H., Sasabe, H. & Adachi, C. Singlet–singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Appl. Phys. Lett. 86, 213506 (2005).

    Article  ADS  Google Scholar 

  37. Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys. Rev. B 62, 10967–10977 (2000).

    Article  ADS  Google Scholar 

  38. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  ADS  Google Scholar 

  39. Ehrenfreund, E. & Vardeny, Z. V. Effects of magnetic field on conductance and electroluminescence in organic devices. Isr. J. Chem. 52, 552–562 (2012).

    Article  Google Scholar 

  40. Wang, F. J., Bassler, H. & Vardeny, Z. V. Magnetic field effects in π-conjugated polymer-fullerene blends: Evidence for multiple components. Phys. Rev. Lett. 101, 236805 (2008).

    Article  ADS  Google Scholar 

  41. Van Bree, J., Silov, A. Y., Koenraad, P. M., Flatté, M. E. & Pryor, C. E. g factors and diamagnetic coefficients of electrons, holes, and excitons in InAs/InP quantum dots. Phys. Rev. B 85, 165323 (2012).

    Article  ADS  Google Scholar 

  42. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid. State Commun. 127, 619–623 (2003).

    Article  ADS  Google Scholar 

  43. Nam, S. B., Reynolds, D. C., Litton, C. W., Almassy, R. J. & Collins, T. C. Free exciton energy spectrum in GaAs. Phys. Rev. B 13, 761–767 (1976).

    Article  ADS  Google Scholar 

  44. Toloza Sandoval, M. A., Ferreira da Silva, A., de Andrada e Silva, E. A. & La Rocca, G. C. Mesoscopic spin–orbit effect in the semiconductor nanostructure electron g factor. Phys. Rev. B 86, 195302 (2012).

    Article  ADS  Google Scholar 

  45. Yang, M. J., Wagner, R. J., Shanabrook, B. V., Waterman, J. R. & Moore, W. J. Spin-resolved cyclotron resonance in InAs quantum wells: A study of the energy-dependent g factor. Phys. Rev. B 47, 6807–6810 (1993).

    Article  ADS  Google Scholar 

  46. Chen, Z., Carter, S. G., Bratschitsch, R., Dawson, P. & Cundiff, S. T. Effects of disorder on electron spin dynamics in a semiconductor quantum well. Nature Phys. 3, 265–269 (2007).

    Article  ADS  Google Scholar 

  47. Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound CH3NH3PbI3 . Physica B 201, 427–430 (1994).

    Article  ADS  Google Scholar 

  48. Nash, K. J., Skolnick, M. S., Claxton, P. A. & Roberts, J. S. Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B 39, 10943–10954 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at the University of Utah was supported by the Utah NSF-Materials Research Science and Engineering Centers (MRSEC) program DMR 1121252 (MFE in devices); NSF grant no. 1404634 (MPL in materials with tuned SOC); and the AFOSR through a MURI grant RA 9550-14-1-0037 given to the University of Utah (picosecond and FICPO spectroscopies). At UT Dallas the work was supported by the Welch Foundation grant no. AT-1617 (photovoltaic device fabrication). We also acknowledge the Utah NSF-MRSEC for supporting the acquisition and development of the FICPO set-up as well as the glove-box/metal evaporation facility. C-X.S. acknowledges the partial support from the DOE (grant No. DE-FG02-04ER46109), and the overseas training program of Jiangsu, 863 Program of China No. 2011AA050520.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and D.S. were responsible for the MFE measurements and writing the first draft; C.Z. and C-X.S. were responsible for the FICPO measurements; C-X.S. and Y.X.Z. were responsible for the picosecond transient dynamics measurements; K.M. and A.Z. were responsible for the perovskite photovoltaic cell fabrication and evaluation; Z.V.V. was responsible for project planning, group managing, and final draft writing.

Corresponding author

Correspondence to Z. V. Vardeny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, D., Sheng, CX. et al. Magnetic field effects in hybrid perovskite devices. Nature Phys 11, 427–434 (2015). https://doi.org/10.1038/nphys3277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing