Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule measurement of the effective temperature in non-equilibrium steady states

Abstract

Temperature is a well-defined quantity for systems in equilibrium. For glassy systems, it has been extended to the non-equilibrium regime, showing up as an effective quantity in a modified version of the fluctuation–dissipation theorem. However, experimental evidence supporting this definition remains scarce. Here, we present the first direct experimental demonstration of the effective temperature by measuring correlations and responses in single molecules in non-equilibrium steady states generated under external random forces. We combine experiment, analytical theory and simulations for systems with different levels of complexity, ranging from a single bead in an optical trap to two-state and multiple-state DNA hairpins. From these data, we extract a unifying picture for the existence of an effective temperature based on the relative order of various timescales characterizing intrinsic relaxation and external driving. Our study thus introduces driven small systems as a fertile ground to address fundamental concepts in statistical physics, condensed-matter physics and biophysics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the stochastic driving.
Figure 2: Harmonic oscillator system.
Figure 3: Short hairpin systems.
Figure 4: Long hairpin system.

Similar content being viewed by others

References

  1. Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43–48 (July 2005).

    Article  Google Scholar 

  2. Jarzynski, C. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011).

    Article  ADS  Google Scholar 

  3. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  ADS  Google Scholar 

  4. Jarzynski, C. Diverse phenomena, common themes. Nature Phys. 11, 105–107 (2015).

    Article  ADS  Google Scholar 

  5. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. & Landim, C. Fluctuations in stationary nonequilibrium states of irreversible processes. Phys. Rev. Lett. 87, 040601 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  6. Derrida, B. Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current. J. Stat. Mech. 2007, P07023 (2007).

    Article  MathSciNet  Google Scholar 

  7. Coniglio, A., Fierro, A., Herrmann, H. J. & Nicodemi, M. (eds) Unifying Concepts in Granular Media and Glasses 1st edn (Elsevier, 2004).

    MATH  Google Scholar 

  8. Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nature Phys. 9, 310–314 (2013).

    Article  ADS  Google Scholar 

  9. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  ADS  Google Scholar 

  10. Cugliandolo, L. F., Kurchan, J. & Peliti, L. Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898–3914 (1997).

    Article  ADS  Google Scholar 

  11. Bellon, L., Ciliberto, S. & Laroche, C. Violation of the fluctuation–dissipation relation during the formation of a colloidal glass. Europhys. Lett. 53, 511–517 (2001).

    Article  ADS  Google Scholar 

  12. Bellon, L. & Ciliberto, S. Experimental study of the fluctuation–dissipation relation during an aging process. Physica D 168, 325–335 (2002).

    Article  ADS  Google Scholar 

  13. Crisanti, A. & Ritort, F. Violations of the fluctuation–dissipation theorem in glassy systems: Basic notions and the numerical evidence. J. Phys. A 36, R181–R290 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. Leuzzi, L. A stroll among effective temperatures in aging systems: Limits and perspectives. J. Non-Cryst. Solids 355, 686–693 (2009).

    Article  ADS  Google Scholar 

  15. Song, C., Wang, P. & Makse, H. A. Experimental measurement of an effective temperature for jammed granular materials. Proc. Natl Acad. Sci. USA 102, 2299–2304 (2005).

    Article  ADS  Google Scholar 

  16. Berthier, L., Barrat, J.-L. & Kurchan, J. A two-time-scale, two-temperature scenario for nonlinear rheology. Phys. Rev. E 61, 5464–5472 (2000).

    Article  ADS  Google Scholar 

  17. Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active matter. Phys. Rev. E 77, 051111 (2008).

    Article  ADS  Google Scholar 

  18. Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep. 461, 111–195 (2008).

    Article  ADS  Google Scholar 

  19. Bouchaud, J. P., Cugliandolo, L. F., Kurchan, J. & Mezard, M. in Spin Glasses and Random Fields (ed. Young, A. P.) 161–223 (World Scientific, 1998).

    Google Scholar 

  20. Prost, J., Joanny, J.-F. & Parrondo, J. M. R. Generalized fluctuation–dissipation theorem for steady-state systems. Phys. Rev. Lett. 103, 090601 (2009).

    Article  ADS  Google Scholar 

  21. Baiesi, M., Maes, C. & Wynants, B. Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103, 010602 (2009).

    Article  ADS  Google Scholar 

  22. Gomez-Solano, J. R., Petrosyan, A., Ciliberto, S., Chetrite, R. & Gawedzki, K. Experimental verification of a modified fluctuation–dissipation relation for a micron-sized particle in a nonequilibrium steady state. Phys. Rev. Lett. 103, 040601 (2009).

    Article  ADS  Google Scholar 

  23. Speck, T. & Seifert, U. Fluctuation–dissipation theorem in nonequilibrium steady states. Europhys. Lett. 89, 10007 (2010).

    Article  ADS  Google Scholar 

  24. Gomez-Solano, J. R., Bellon, L., Petrosyan, A. & Ciliberto, S. Steady-state fluctuation relations for systems driven by an external random force. Europhys. Lett. 89, 60003 (2010).

    Article  ADS  Google Scholar 

  25. Martinez, I. A., Roldan, R., Parrondo, J. M. R. & Petrov, D. Effective heating to several thousand kelvins of an optically trapped sphere in a liquid. Phys. Rev. E 87, 032159 (2013).

    Article  ADS  Google Scholar 

  26. Szamel, G. Self-propelled particle in an external potential: Existence of an effective temperature. Phys. Rev. E 90, 012111 (2014).

    Article  ADS  Google Scholar 

  27. Grigera, T. S. & Israeloff, N. E. Observation of fluctuation–dissipation-theorem violations in a structural glass. Phys. Rev. Lett. 83, 5038–5041 (1999).

    Article  ADS  Google Scholar 

  28. Herisson, D. & Ocio, M. Fluctuation–dissipation ratio of a spin glass in the aging regime. Phys. Rev. Lett. 88, 257202 (2002).

    Article  ADS  Google Scholar 

  29. Huang, R. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. 7, 576–580 (2011).

    Article  ADS  Google Scholar 

  30. Franosch, T. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011).

    Article  ADS  Google Scholar 

  31. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Phys. 8, 143–146 (2012).

    Article  ADS  Google Scholar 

  32. Berut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–190 (2012).

    Article  ADS  Google Scholar 

  33. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  Google Scholar 

  34. Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl Acad. Sci. USA 94, 11935–11940 (1997).

    Article  ADS  Google Scholar 

  35. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002).

    Article  ADS  Google Scholar 

  36. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    Article  ADS  Google Scholar 

  37. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article  ADS  Google Scholar 

  38. Forns, N. et al. Improving signal/noise resolution in single-molecule experiments using molecular constructs with short handles. Biophys. J. 100, 1765–1774 (2011).

    Article  ADS  Google Scholar 

  39. Palmer, R. G. Broken ergodicity. Adv. Phys. 31, 669–735 (1982).

    Article  ADS  Google Scholar 

  40. Crisanti, A., Picco, M. & Ritort, F. Fluctuation relation for weakly ergodic systems. Phys. Rev. Lett. 110, 080601 (2013).

    Article  ADS  Google Scholar 

  41. Huguet, J. M. et al. Single-molecule derivation of salt dependent base-pair free energies in DNA. Proc. Natl Acad. Sci. USA 107, 15431–15436 (2010).

    Article  ADS  Google Scholar 

  42. Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134–162 (2002).

    Article  Google Scholar 

  43. Camunas-Soler, J. et al. Electrostatic binding and hydrophobic collapse of peptide–nucleic acid aggregates quantified using force spectroscopy. ACS Nano 7, 5102–5113 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

F.R. is supported by an Institucio Catalana de Recerca i Estudis Avancats Academia 2013 grant. The research leading to these results (J.C.-S., M.R.-C., F.R.) has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant 308850 INFERNOS (Information, Fluctuations, and Energy Control in Small Systems) and FIS2013-47796-P from the Spanish Research Council.

Author information

Authors and Affiliations

Authors

Contributions

F.R. and U.S. developed theory and designed experiments, E.D. performed theoretical calculations, simulations and data analysis, J.C.-S. and M.R.-C. performed the experiments. All authors contributed to writing the paper.

Corresponding author

Correspondence to F. Ritort.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M. et al. Single-molecule measurement of the effective temperature in non-equilibrium steady states. Nature Phys 11, 971–977 (2015). https://doi.org/10.1038/nphys3435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing